• Photonics Research
  • Vol. 11, Issue 10, 1723 (2023)
Zi-Wen Zhang1,2, Yu-Lu Lei1,2, Juan-Feng Zhu3, and Chao-Hai Du1,2,*
Author Affiliations
  • 1Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China
  • 2State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing 100871, China
  • 3Science, Mathematics, and Technology (SMT), Singapore University of Technology and Design, Singapore 487372, Singapore
  • show less
    DOI: 10.1364/PRJ.497533 Cite this Article Set citation alerts
    Zi-Wen Zhang, Yu-Lu Lei, Juan-Feng Zhu, Chao-Hai Du, "Plasmonic vortex beam emitter," Photonics Res. 11, 1723 (2023) Copy Citation Text show less
    References

    [1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] G. Indebetouw. Optical vortices and their propagation. J. Mod. Opt., 40, 73-87(1993).

    [3] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [4] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [5] A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, S. Ashrafi. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 7, 66-106(2015).

    [6] A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, E. Karimi. High-dimensional intracity quantum cryptography with structured photons. Optica, 4, 1006-1010(2017).

    [7] J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, L. O. Silva. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nat. Commun., 7, 10371(2016).

    [8] H. Zhou, X. Su, A. Minoofar, R. Zhang, K. Zou, H. Song, K. Pang, H. Song, N. Hu, Z. Zhao, A. Almaiman, S. Zach, M. Tur, A. F. Molisch, H. Sasaki, D. Lee, A. E. Willner. Utilizing multiplexing of structured THz beams carrying orbital-angular-momentum for high-capacity communications. Opt. Express, 30, 25418-25432(2022).

    [9] A. A. Sirenko, P. Marsik, C. Bernhard, T. N. Stanislavchuk, V. Kiryukhin, S. W. Cheong. Terahertz vortex beam as a spectroscopic probe of magnetic excitations. Phys. Rev. Lett., 122, 237401(2019).

    [10] K. Miyamoto, K. Suizu, T. Akiba, T. Omatsu. Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate. Appl. Phys. Lett., 104, 261104(2014).

    [11] Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, Y. Zhang. Spatial terahertz modulator. Sci. Rep., 3, 3347(2013).

    [12] J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, Y. Zhang. Generation and evolution of the terahertz vortex beam. Opt. Express, 21, 20230-20239(2013).

    [13] B. A. Knyazev, Y. Y. Choporova, M. S. Mitkov, V. S. Pavelyev, B. O. Volodkin. Generation of terahertz surface plasmon polaritons using nondiffractive Bessel beams with orbital angular momentum. Phys. Rev. Lett., 115, 163901(2015).

    [14] B. Volodkin, Y. Choporova, B. Knyazev, G. Kulipanov, V. Pavelyev, V. Soifer, N. Vinokurov. Fabrication and characterization of diffractive phase plates for forming high-power terahertz vortex beams using free electron laser radiation. Opt. Quantum Electron., 48, 223(2016).

    [15] R. Imai, N. Kanda, T. Higuchi, K. Konishi, M. Kuwata-Gonokami. Generation of broadband terahertz vortex beams. Opt. Lett., 39, 3714-3717(2014).

    [16] J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305, 847-848(2004).

    [17] Z. Gao, L. Wu, F. Gao, Y. Luo, B. Zhang. Spoof plasmonics: from metamaterial concept to topological description. Adv. Mater., 30, 1706683(2018).

    [18] L. Tong, H. Wei, S. Zhang, H. Xu. Recent advances in plasmonic sensors. Sensors, 14, 7959-7973(2014).

    [19] S. Roh, T. Chung, B. Lee. Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors. Sensors, 11, 1565-1588(2011).

    [20] L. Liu, Z. Han, S. He. Novel surface plasmon waveguide for high integration. Opt. Express, 13, 6645-6650(2005).

    [21] L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, C. W. Kimball. Subwavelength focusing and guiding of surface plasmons. Nano Lett., 5, 1399-1402(2005).

    [22] Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).

    [23] F. J. Garcia-Vidal, A. I. Fernández-Domínguez, L. Martin-Moreno, H. C. Zhang, W. Tang, R. Peng, T. J. Cui. Spoof surface plasmon photonics. Rev. Mod. Phys., 94, 025004(2022).

    [24] C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat. Photonics, 2, 175-179(2008).

    [25] F. Rüting, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal. Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum. Phys. Rev. B, 86, 075437(2012).

    [26] J.-F. Zhu, C.-H. Du, Z.-W. Zhang, F.-H. Li. Generating a multi-mode vortex beam based on spoof surface plasmon polaritons. Opt. Lett., 47, 4459-4462(2022).

    [27] A. Bera, R. K. Barik, M. Sattorov, O. Kwon, S.-H. Min, I.-K. Baek, S. Kim, J.-K. So, G.-S. Park. Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding. Opt. Express, 22, 3039-3044(2014).

    [28] J. F. Zhu, C. H. Du, F. H. Li, L. Y. Bao, P. K. Liu. Free-electron-driven multi-frequency terahertz radiation on a super-grating structure. IEEE Access, 7, 181184(2019).

    [29] Z.-W. Zhang, J.-F. Zhu, C.-H. Du, F. Gao, F.-Y. Han, P.-K. Liu. Chiral plasmons enable coherent vortex Smith–Purcell radiation. Laser Photonics Rev., 17, 2200420(2023).

    [30] K. Zhang, D. Li, K. Chang, K. Zhang, D. Li. Electromagnetic Theory for Microwaves and Optoelectronics(1998).

    [31] H. I. Sztul, R. R. Alfano. The Poynting vector and angular momentum of Airy beams. Opt. Express, 16, 9411-9416(2008).

    [32] R. Zambrini, S. M. Barnett. Quasi-intrinsic angular momentum and the measurement of its spectrum. Phys. Rev. Lett., 96, 113901(2006).