• International Journal of Extreme Manufacturing
  • Vol. 3, Issue 1, 15201 (2021)
Henrik Dobbelstein1、*, Easo P George2、3, Evgeny L Gurevich1, Aleksan-der Kostka4, Andreas Ostendorf1, and Guillaume Laplanche5
Author Affiliations
  • 1Applied Laser Technologies, Ruhr-University Bochum, Universittsstr. 150, 44801 Bochum, Germany
  • 2Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6115, United States of America
  • 3Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996-2100, United States of America
  • 4Center for Interface-Dominated High Performance Materials, Ruhr-University Bochum, Universittsstr. 150, 44801 Bochum, Germany
  • 5Institute for Materials, Ruhr-University Bochum, Universittsstr. 150, 44801 Bochum, Germany
  • show less
    DOI: 10.1088/2631-7990/abcca8 Cite this Article
    Henrik Dobbelstein, Easo P George, Evgeny L Gurevich, Aleksan-der Kostka, Andreas Ostendorf, Guillaume Laplanche. Laser metal deposition of refractory high-entropy alloys for high-throughput synthesis and structure-property characterization[J]. International Journal of Extreme Manufacturing, 2021, 3(1): 15201 Copy Citation Text show less
    References

    [1] George E P, Raabe D and Ritchie R O 2019 High-entropy alloys Nat. Rev. Mater. 4 515–34

    [2] George E P, Curtin W A and Tasan C C 2020 High entropy alloys: a focused review of mechanical properties and deformation mechanisms Acta Mater. 188 435–74

    [3] Oses C, Toher C and Curtarolo S 2020 High-entropy ceramics Nat. Rev. Mater. 5 295–309

    [4] Music′o B L, Gilbert D, Ward T Z, Page K, George E P, Yan J Q, Mandrus D and Keppens V 2020 The emergent field of high entropy oxides: design, prospects, challenges, and opportunities for tailoring material properties APL Mater. 8 040912

    [5] Senkov O N, Wilks G B, Scott J M and Miracle D B 2011 Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys Intermetallics 19 698–706

    [6] Senkov O N, Scott J M, Senkova S V, Miracle D B and Woodward C F 2011 Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy J. Alloys Compd. 509 6043–8

    [7] Senkov O N and Semiatin S L 2015 Microstructure and properties of a refractory high-entropy alloy after cold working J. Alloys Compd. 649 1110–23

    [8] Couzini′e J P, Dirras G, Perri`ere L, Chauveau T, Leroy E, Champion Y and Guillot I 2014 Microstructure of a near-equimolar refractory high-entropy alloy Mater. Lett. 126 285–7

    [9] Senkov O N, Scott J M, Senkova S V, Meisenkothen F, Miracle D B and Woodward C F 2012 Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy J. Mater. Sci. 47 4062–74

    [10] Juan C C, Tsai M H, Tsai C W, Lin C M, Wang W R, Yang C C, Chen S K, Lin S J and Yeh J W 2015 Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys Intermetallics 62 76–83

    [11] Juan C C, Tseng K K, Hsu W L, Tsai M H, Tsai C W, Lin C C, Chen S K, Lin S J and Yeh J W 2016 Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys Mater. Lett. 175 284–7

    [12] Juan C C, Tsai M H, Tsai C W, Hsu W L, Lin C M, Chen S K, Lin S J and Yeh J W 2016 Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining Mater. Lett. 184 200–3

    [13] Dirras G, Lilensten L, Djemia P, Laurent-Brocq M, Tingaud D, Couzini′e J P, Perri`ere L, Chauveau T and Guillot I 2016 Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy Mater. Sci. Eng. A 654 30–38

    [14] Laplanche G, Gadaud P, Perri`ere L, Guillot I and Couzini′e J P 2019 Temperature dependence of elastic moduli in a refractory HfNbTaTiZr high-entropy alloy J. Alloys Compd. 799 538–45

    [15] Heidelmann M, Feuerbacher M, Ma D C and Grabowski B 2016 Structural anomaly in the high-entropy alloy ZrNbTiTaHf Intermetallics 68 11–15

    [16] Schuh B, Vlker V, Todt J, Schell N, Perri`ere L, Li J, Couzini′e J P and Hohenwarter A 2018 Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties Acta Mater. 142 201–12

    [17] Stepanov N D, Yurchenko N Y, Zherebtsov S V, Tikhonovsky M A and Salishchev G A 2018 Aging behavior of the HfNbTaTiZr high entropy alloy Mater. Lett. 211 87–90

    [18] Chen S Y et al 2019 Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures Scr. Mater. 158 50–56

    [19] Lilensten L, Couzini′e J P, Perri`ere L, Bourgon J, Emery N and Guillot I 2014 New structure in refractory high-entropy alloys Mater. Lett. 132 123–5

    [20] Lilensten L, Couzini′e J P, Bourgon J, Perri`ere L, Dirras G, Prima F and Guillot I 2017 Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity Mater. Res. Lett. 5 110–116

    [21] Feuerbacher M, Heidelmann M and Thomas C 2015 Plastic deformation properties of Zr-Nb-Ti-Ta-Hf high-entropy alloys Phil. Mag. 95 1221–32

    [22] Lei Z F et al 2018 Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes Nature 563 546–52

    [23] Li R D, Niu P D, Yuan T C, Cao P, Chen C and Zhou K C 2018 Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical property J. Alloys Compd. 746 125–34

    [24] Zhu Z G, Nguyen Q B, Ng F L, An X H, Liao X Z, Liaw P K, Nai S M L and Wei J 2018 Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting Scr. Mater. 154 20–24

    [25] Park J M, Choe J, Kim J G, Bae J W, Moon J, Yang S, Kim K T, Yu J H and Kim H S 2020 Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting Mater. Res. Lett. 8 1–7

    [26] Brif Y, Thomas M and Todd I 2015 The use of highentropy alloys in additive manufacturing Scr. Mater. 99 93–96

    [27] Wu W Q, Zhou R, Wei B Q, Ni S, Liu Y and Song M 2018 Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting Mater. Charact. 144 605–10

    [28] Luo S C, Gao P, Yu H C, Yang J J, Wang Z M and Zeng X Y 2019 Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical behavior J. Alloys Compd. 771 387–97

    [29] Zhang H, Xu W, Xu Y J, Lu Z L and Li D C 2018 The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM): experiment and simulation Int. J. Adv. Manuf. Technol. 96 461–74

    [30] Qiu Z C, Yao C W, Feng K, Li Z G and Chu P K 2018 Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process Int. J. Lightweight Mater. Manuf. 1 33–39

    [31] Amar A et al 2019 Additive manufacturing of high-strength CrMnFeCoNi-based high entropy alloys with TiC addition Intermetallics 109 162–6

    [32] Tong Z P, Ren X D, Jiao J F, Zhou W F, Ren Y P, Ye Y X, Larson E and Gu J Y 2019 Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: effect of heat treatment on microstructure, residual stress and mechanical property J. Alloys Compd. 785 1144–59

    [33] Gao X Y and Lu Y Z 2019 Laser 3D printing of CoCrFeMnNi high-entropy alloy Mater. Lett. 236 77–80

    [34] Xiang S et al 2019 Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique J. Alloys Compd. 773 387–92

    [35] Zhang H, Pan Y and He Y Z 2011 Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding Mater. Des. 32 1910–5

    [36] Huang C, Zhang Y Z, Vilar R and Shen J Y 2012 Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate Mater. Des. 41 338–43

    [37] Wu W, Jiang L, Jiang H, Pan X M, Cao Z Q, Deng D W, Wang T M and Li T J 2015 Phase evolution and properties of Al2CrFeNiMox high-entropy alloys coatings by laser cladding J. Therm. Spray Technol. 24 1333–40

    [38] Zhang H, Pan Y and He Y Z 2011 Effects of annealing on the microstructure and properties of 6FeNiCoCrAlTiSi high-entropy alloy coating prepared by laser cladding J. Therm. Spray Technol. 20 1049–55

    [39] Ye X Y, Ma M X, Liu W J, Li L, Zhong M L, Liu Y X and Wu Q W 2011 Synthesis and characterization of high-entropy alloy AlXFeCoNiCuCr by laser cladding Adv. Mater. Sci. Eng. 2011 485942

    [40] Joseph J, Jarvis T, Wu X H, Stanford N, Hodgson P and Fabijanic D M 2015 Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys Mater. Sci. Eng. A 633 184–93

    [41] Chao Q, Guo T T, Jarvis T, Wu X H, Hodgson P and Fabijanic D 2017 Direct laser deposition cladding of AlxCoCrFeNi high entropy alloys on a high-temperature stainless steel Surf. Coat. Technol. 332 440–51

    [42] Wang R, Zhang K, Davies C and Wu X 2017 Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication J. Alloys Compd. 694 971–81

    [43] Ocelík V, Janssen N, Smith S N and De Hosson J T M 2016 Additive manufacturing of high-entropy alloys by laser processing JOM 68 1810–8

    [44] Haase C, Tang F, Wilms M B, Weisheit A and Hallstedt B 2017 Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys—Towards rapid alloy screening and design Mater. Sci. Eng. A 688 180–9

    [45] Dobbelstein H, Thiele M, Gurevich E L, George E P and Ostendorf A 2016 Direct metal deposition of refractory high entropy alloy MoNbTaW Phys. Procedia 83 624–33

    [46] Zhang M N, Zhou X L, Yu X N and Li J H 2017 Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding Surf. Coat. Technol. 311 321–9

    [47] Dobbelstein H, Gurevich E L, George E P, Ostendorf A and Laplanche G 2018 Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy Addit. Manuf. 24 386–90

    [48] Dobbelstein H, Gurevich E L, George E P, Ostendorf A and Laplanche G 2019 Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends Addit. Manuf. 25 252–62

    [49] Li Q Y, Zhang H, Li D C, Chen Z H, Huang S, Lu Z L and Yan H Q 2019 WxNbMoTa refractory high-entropy alloys fabricated by laser cladding deposition Materials 12 533

    [50] Moorehead M, Bertsch K, Niezgoda M, Parkin C, Elbakhshwan M, Sridharan K, Zhang C, Thoma D and Couet A 2020 High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing Mater. Des. 187 108358

    [51] Melia M A, Whetten S R, Puckett R, Jones M, Heiden M J, Argibay N and Kustas A B 2020 High-throughput additive manufacturing and characterization of refractory high entropy alloys Appl. Mater. Today 19 100560

    [52] Gibson I, Rosen D and Stucker B 2015 Additive Manufacturing Technologies 2nd edn (Berlin: Springer) p 258

    [53] Battezzati L and Greer A L 1989 The viscosity of liquid metals and alloys Acta Metall. 37 1791–802

    [54] Kaptay G 2005 A unified equation for the viscosity of pure liquid metals Int. J. Mater. Res. 96 24–31

    [55] Porter D A and Easterling K E 1981 Phase Transformations in Metals and Alloys (New York: Van Nostrand Reinhold)

    [56] Samimi P, Liu Y, Ghamarian I and Collins P C 2014 A novel tool to assess the influence of alloy composition on the oxidation behavior and concurrent oxygen-induced phase transformations for binary Ti–xMo alloys at 650 C Corros. Sci. 89 295–306

    [57] Banerjee S and Mukhopadhyay P 2007 Phase transformations, examples from titanium and zirconium alloys Pergamon Mater. Ser. 12 1–813

    [58] Nakai K, Kinoshita C and Kitajima S 1981 Effects of oxygen and/or nitrogen on phase transformations above the monotectoid temperature in Nb-Zr alloys J. Nucl. Mater. 98 131–43

    [59] Lilensten L, Couzini′e J P, Perri`ere L, Hocini A, Keller C, Dirras G and Guillot I 2018 Study of a bcc multi-principal element alloy: tensile and simple shear properties and underlying deformation mechanisms Acta Mater. 142 131–41

    [60] Chen S Y, Tseng K K, Tong Y, Li W D, Tsai C W, Yeh J W and Liaw P K 2019 Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy J. Alloys Compd. 795 19–26

    [61] Chen S Y et al 2019 Peierls barrier characteristic and anomalous strain hardening provoked by dynamic-strainaging strengthening in a body-centered-cubic high-entropy alloy Mater. Res. Lett. 7 475–81

    [62] Ye Y X, Musico B L, Lu Z Z, Xu L B, Lei Z F, Keppens V, Xu H X and Nieh T G 2019 Evaluating elastic properties of a body-centered cubic NbHfZrTi high-entropy alloy—A direct comparison between experiments and ab initio calculations Intermetallics 109 167–73

    Henrik Dobbelstein, Easo P George, Evgeny L Gurevich, Aleksan-der Kostka, Andreas Ostendorf, Guillaume Laplanche. Laser metal deposition of refractory high-entropy alloys for high-throughput synthesis and structure-property characterization[J]. International Journal of Extreme Manufacturing, 2021, 3(1): 15201
    Download Citation