• High Power Laser Science and Engineering
  • Vol. 4, Issue 3, 03000e34 (2016)
D.N. Papadopoulos1, J.P. Zou1, C. Le Blanc1, G. Ch′eriaux1, P. Georges2, F. Druon2, G. Mennerat3, P. Ramirez1、2, L. Martin1, A. Fr′eneaux1, A. Beluze1, N. Lebas1, P. Monot3, F. Mathieu1, and P. Audebert1
Author Affiliations
  • 1Laboratoire pour l’Utilisation des Lasers Intenses, CNRS, Ecole Polytechnique, Palaiseau, France
  • 2Laboratoire Charles Fabry, UMR 8501 Institut d’Optique, CNRS, Univ Paris Sud, Palaiseau, France
  • 3CEA, Iramis, SPAM, Saclay, France
  • show less
    DOI: 10.1017/hpl.2016.34 Cite this Article Set citation alerts
    D.N. Papadopoulos, J.P. Zou, C. Le Blanc, G. Ch′eriaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fr′eneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, P. Audebert. The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics[J]. High Power Laser Science and Engineering, 2016, 4(3): 03000e34 Copy Citation Text show less
    Global schematic of the Apollon 10 PW laser installation.
    Fig. 1. Global schematic of the Apollon 10 PW laser installation.
    Simplified diagram of the pulse characteristics evolution in the Front End of the Apollon laser.
    Fig. 2. Simplified diagram of the pulse characteristics evolution in the Front End of the Apollon laser.
    Wizzler measurement (red line) and FTL pulse (black line) of the compressed ps-OPCPA stage of the Front End (upper graph). Third order autocorrelation of the ps-OPCPA pulses (lower graph). The device used for this measurement is a homemade Sequoia type 3rd order autocorrelator with $750~\unicode[STIX]{x03BC}\text{J}$ input pulses.
    Fig. 3. Wizzler measurement (red line) and FTL pulse (black line) of the compressed ps-OPCPA stage of the Front End (upper graph). Third order autocorrelation of the ps-OPCPA pulses (lower graph). The device used for this measurement is a homemade Sequoia type 3rd order autocorrelator with $750~\unicode[STIX]{x03BC}\text{J}$ input pulses.
    Schematic representation of the telescopes configuration in the Apollon chain (upper part). Zemax calculated total OPD for the final 400 mm beam over the full spectral range (720–920 nm) (lower part).
    Fig. 4. Schematic representation of the telescopes configuration in the Apollon chain (upper part). Zemax calculated total OPD for the final 400 mm beam over the full spectral range (720–920 nm) (lower part).
    Spectral (upper graphs) and temporal (lower graphs) impact of the two alternative high LIDT mirror coatings designs (red and blue line curves) used in the Apollon laser.
    Fig. 5. Spectral (upper graphs) and temporal (lower graphs) impact of the two alternative high LIDT mirror coatings designs (red and blue line curves) used in the Apollon laser.
    Estimated compressed pulse form without any active spectral phase control (blue line curve) in the case of 15 fs Gaussian input pulses (green line curve).
    Fig. 6. Estimated compressed pulse form without any active spectral phase control (blue line curve) in the case of 15 fs Gaussian input pulses (green line curve).
    MIRO simulation of the spectrum of the amplified output beam of the Apollon laser as a function of the position in the beam.
    Fig. 7. MIRO simulation of the spectrum of the amplified output beam of the Apollon laser as a function of the position in the beam.
    MIRO simulation of the impact in the far-field of the finite size gratings of the 10 PW compressor of the Apollon laser.
    Fig. 8. MIRO simulation of the impact in the far-field of the finite size gratings of the 10 PW compressor of the Apollon laser.
    TWE of the retroreflector of the 1 PW compressor (maximum $\text{scale}=\unicode[STIX]{x1D706}/8$).
    Fig. 9. TWE of the retroreflector of the 1 PW compressor (maximum $\text{scale}=\unicode[STIX]{x1D706}/8$).
    Table 1. Temporal duration and contrast intended values and limiting factors considered for the Apollon laser design.
    D.N. Papadopoulos, J.P. Zou, C. Le Blanc, G. Ch′eriaux, P. Georges, F. Druon, G. Mennerat, P. Ramirez, L. Martin, A. Fr′eneaux, A. Beluze, N. Lebas, P. Monot, F. Mathieu, P. Audebert. The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics[J]. High Power Laser Science and Engineering, 2016, 4(3): 03000e34
    Download Citation