• Advanced Photonics
  • Vol. 6, Issue 2, 026007 (2024)
Xianghong Nan1、†, Wenduo Lai1, Jie Peng2, Haiquan Wang1, Bojun Chen1, Huifan He1, Zekang Mo1, Zikun Xia1, Ning Tan1, Zhong Liu3, Long Wen1、*, Dan Gao2, and Qin Chen1、*
Author Affiliations
  • 1Jinan University, College of Physics & Optoelectronic Engineering, Institute of Nanophotonics, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Guangzhou, China
  • 2Tsinghua University, Shenzhen International Graduate School, State Key Laboratory of Chemical Oncogenomics, Shenzhen, China
  • 3Jinan University, College of Life Science and Technology, Guangzhou, China
  • show less
    DOI: 10.1117/1.AP.6.2.026007 Cite this Article Set citation alerts
    Xianghong Nan, Wenduo Lai, Jie Peng, Haiquan Wang, Bojun Chen, Huifan He, Zekang Mo, Zikun Xia, Ning Tan, Zhong Liu, Long Wen, Dan Gao, Qin Chen. In situ photoelectric biosensing based on ultranarrowband near-infrared plasmonic hot electron photodetection[J]. Advanced Photonics, 2024, 6(2): 026007 Copy Citation Text show less
    References

    [1] R. Cheng, N. A. Jaeger, L. Chrostowski. Fully tailorable integrated-optic resonators based on chirped waveguide moiré gratings. Optica, 7, 647-657(2020).

    [2] S. Nair, C. Escobedo, R. G. Sabat. Crossed surface relief gratings as nanoplasmonic biosensors. ACS Sens., 2, 379-385(2017).

    [3] M. Liang et al. Development of an Au nanoclusters based activatable nanoprobe for NIR-II fluorescence imaging of gastric acid. Biosens. Bioelectron., 224, 115062(2023).

    [4] L. Kühner et al. Nanoantenna-enhanced infrared spectroscopic chemical imaging. ACS Sens., 2, 655-662(2017).

    [5] Q. Chen et al. Nanophotonic color routing. Adv. Mater., 33, 2103815(2021).

    [6] Q. Lin et al. Filterless narrowband visible photodetectors. Nat. Photonics, 9, 687-694(2015).

    [7] Y. Fang et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics, 9, 679-686(2015).

    [8] A. Armin et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun., 6, 6343(2015).

    [9] W. Wang et al. Highly narrowband photomultiplication type organic photodetectors. Nano Lett., 17, 1995-2002(2017).

    [10] J. Li et al. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nat. Commun., 10, 806(2019).

    [11] L. Wang et al. Highly sensitive narrowband Si photodetector with peak response at around 1060 nm. IEEE Trans. Electron Devices, 67, 3211-3214(2020).

    [12] W. Ho et al. Narrow-band metal-oxide-semiconductor photodetector. Appl. Phys. Lett., 94, 061114(2009).

    [13] S. Murtaza et al. Resonant-cavity enhanced (RCE) separate absorption and multiplication (SAM) avalanche photodetector (APD). IEEE Photonics Technol. Lett., 7, 1486-1488(1995).

    [14] X. Nie et al. Strongly polarized quantum well infrared photodetector with metallic cavity for narrowband wavelength selective detection. Appl. Phys. Lett., 116, 161107(2020).

    [15] X. Tang et al. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared. J. Mater. Chem. C, 5, 362-369(2017).

    [16] H. Monshat, L. Liu, M. Lu. A narrowband photo‐thermoelectric detector using photonic crystal. Adv. Opt. Mater., 7, 1801248(2019).

    [17] X. Tan et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors. Nat. Commun., 11, 5245(2020).

    [18] A. Solanki et al. Harnessing the interplay between photonic resonances and carrier extraction for narrowband germanium nanowire photodetectors spanning the visible to infrared. ACS Photonics, 5, 520-527(2018).

    [19] Q. Chen et al. Ultra-broadband spatial light modulation with dual-resonance coupled epsilon-near-zero materials. Nano Res., 14, 2673-2680(2021).

    [20] L. Wen et al. Broad-band spatial light modulation with dual epsilon-near-zero modes. Opto-Electron. Adv., 5, 200093(2022).

    [21] A. Sobhani et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun., 4, 1643(2013).

    [22] M. Tanzid et al. Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection. ACS Photonics, 5, 3472-3477(2018).

    [23] L. Wen et al. Multiband and ultrahigh figure-of-merit nanoplasmonic sensing with direct electrical readout in Au-Si nanojunctions. ACS Nano, 13, 6963-6972(2019).

    [24] H. Yan et al. Wideband-tunable on-chip microwave photonic filter with ultrahigh-Q U-bend-Mach–Zehnder-interferometer-coupled microring resonators. Laser Photonics Rev., 17, 2300347(2023).

    [25] L. Huang et al. Pushing the limit of high-Q mode of a single dielectric nanocavity. Adv. Photonics, 3, 016004(2021).

    [26] S. N. Zheng et al. Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution. Nat. Commun., 10, 2349(2019).

    [27] Z. Sun et al. Plasmonic near-infrared photoconductor based on hot hole collection in the metal-semiconductor-metal junction. Molecules, 27, 6922(2022).

    [28] Y. Dong et al. CMOS-compatible broad-band hot carrier photodetection with Cu–silicon nanojunctions. ACS Photonics, 9, 3705-3711(2022).

    [29] L. Wen et al. Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and Omni-Schottky junction. Laser Photonics Rev., 11, 1700059(2017).

    [30] Z. Qi et al. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection. Nanotechnology, 28, 275202(2017).

    [31] L. Wen et al. Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nanocomposites. ACS Photonics, 5, 581-591(2018).

    [32] C. Zhang et al. Recent progress and future opportunities for hot carrier photodetectors: from ultraviolet to infrared bands. Laser Photonics Rev., 16, 2100741(2022).

    [33] C. Zhang et al. Plasmonic nanoneedle arrays with enhanced hot electron photodetection for near-IR imaging. Adv. Funct. Mater., 33, 2304368(2023).

    [34] B. Gao et al. Nanoscale refractive index sensors with high figures of merit via optical slot antennas. ACS Nano, 13, 9131-9138(2019).

    [35] J. Wang et al. Broadband Tamm plasmon-enhanced planar hot-electron photodetector. Nanoscale, 12, 23945-23952(2020).

    [36] Z. Wang et al. Narrowband thermal emission realized through the coupling of cavity and Tamm plasmon resonances. ACS Photonics, 5, 2446-2452(2018).

    [37] L.-H. Jin, S.-M. Li, Y.-H. Cho. Enhanced detection sensitivity of pegylated CdSe/ZnS quantum dots-based prostate cancer biomarkers by surface plasmon-coupled emission. Biosen. Bioelectron., 33, 284-287(2012).

    [38] L. Wen et al. On-chip ultrasensitive and rapid hydrogen sensing based on plasmon-induced hot electron–molecule interaction. Light Sci. Appl., 12, 76(2023).

    [39] Q. Chen et al. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron. Adv., 3, 190040(2020).

    [40] Q. Zheng et al. On-chip near-infrared spectral sensing with minimal plasmon-modulated channels. Laser Photonics Rev., 17, 2300475(2023).

    [41] Y. Huang et al. Compact surface plasmon resonance IgG sensor based on H-shaped optical fiber. Biosensors, 12, 141(2022).

    [42] K. Liu et al. MoSe2-Au based sensitivity enhanced optical fiber surface plasmon resonance biosensor for detection of goat-anti-rabbit IgG. IEEE Access, 8, 660-668(2020). https://doi.org/10.1109/ACCESS.2019.2961751

    [43] Z. Mai et al. A disposable fiber optic SPR probe for immunoassay. Biosens. Bioelectron., 144, 111621(2019).

    [44] W.-S. Jiang et al. Reduced graphene oxide-based optical sensor for detecting specific protein. Sens. Actuators B: Chem., 249, 142-148(2017).

    [45] J. Zhang et al. A protein A modified Au-graphene oxide composite as an enhanced sensing platform for SPR-based immunoassay. Analyst, 138, 7175(2013).

    [46] B. Wang et al. An optical fiber immunosensor with a low detection limit based on plasmon coupling enhancement. J Lightwave Technol., 38, 3781-3788(2020).

    Xianghong Nan, Wenduo Lai, Jie Peng, Haiquan Wang, Bojun Chen, Huifan He, Zekang Mo, Zikun Xia, Ning Tan, Zhong Liu, Long Wen, Dan Gao, Qin Chen. In situ photoelectric biosensing based on ultranarrowband near-infrared plasmonic hot electron photodetection[J]. Advanced Photonics, 2024, 6(2): 026007
    Download Citation