• Journal of Atmospheric and Environmental Optics
  • Vol. 16, Issue 4, 283 (2021)
Kongyi WU1、*, Weizhen HOU2, Zheng SHI2, Hua XU2, and Yanan WEN2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2021.04.001 Cite this Article
    WU Kongyi, HOU Weizhen, SHI Zheng, XU Hua, WEN Yanan. Research Progress of Aerosol Remote Sensing Retrieval Algorithm Based on Satellite Multi-Angle Observation[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(4): 283 Copy Citation Text show less
    References

    [1] Shindell D, Faluvegi G. Climate response to regional radiative forcing during the twentieth century[J]. Nature Geoscience, 2009, 2(4): 294-300.

    [2] Hasekamp O P, Gryspeerdt E, Quaas J. Analysis of polarimetric satellite measurements suggests stronger cooling due to aerosol-cloud interactions[J]. Nature Communications, 2019, 10: 5405.

    [3] Bellouin N, Boucher O, Haywood J, et al. Global estimate of aerosol direct radiative forcing from satellite measurements[J]. Nature, 2005, 438(7071): 1138-1141.

    [4] Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon[J]. Nature Geoscience, 2008, 1(4): 221-227.

    [5] Shindell D, Faluvegi G. Climate response to regional radiative forcing during the twentieth century[J]. Nature Geoscience, 2009, 2(4): 294-300.

    [6] Stephens G L, Li J, Wild M, et al. An update on earth′s energy balance in light of the latest global observations[J]. Nature Geoscience, 2012, 5(10): 691-696.

    [7] Holben B N, Eck T F, Slutsker I, et al. AERONET-A federated instrument network and data archive for aerosol characterization[J]. Remote Sensing of Environment, 1998, 66(1): 1-16.

    [8] Li Z Q, Xu H, Li K T, et al. Comprehensive study of optical, physical, chemical and radiative properties of total columnar atmospheric aerosols over China: An overview of sun-sky radiometer observation network (SONET) measurements[J]. Bulletinof the American Meteorological Society, 2018, 99(4): 739-755.

    [9] Kaufman Y J, Tanré D, Boucher O. A satellite view of aerosols in the climate system[J]. Nature, 2002, 419(6903): 215-223.

    [10] Dubovik O, Li Z Q, Mishchenko M I, et al. Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 224: 474-511.

    [11] Dubovik O, Herman M, Holdak A, et al. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations[J]. Atmospheric Measurement Techniques, 2011, 4(5): 975-1018.

    [12] Sayer A M, Govaerts Y, Kolmonen P, et al. A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing[J]. Atmospheric Measurement Techniques, 2020, 13(2): 373-404.

    [13] Kaufman Y J, Tanré D, Remer L A, et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 17051-17067.

    [14] Levy R C, Remer L A, Mattoo S, et al. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance[J]. Journal of Geophysical Research,2007, 112(D13): D13211.

    [15] Levy R C, Mattoo S, Munchak L A, et al. The Collection 6 MODIS aerosol products over land and ocean[J]. Atmospheric Measurement Techniques Discussions, 2013, 6(11): 2989-3034.

    [16] Hsu N C, Tsay S C, King M D, et al. Aerosol properties over bright-reflecting source regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 557-569.

    [17] Hsu N C, Tsay S C, King M D, et al. Deep blue retrievals of Asian aerosol properties during ACE-Asia[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3180-3195.

    [18] Yang Leiku, Hu Xiuqing, Wang Han, et al. Preliminary test of quantitative capability in aerosol retrieval over land from MERSI-II onboard Fengyun-3D[J]. Journal of Remote Sensing, 2021. DOI: 10.11834/jrs.20200286.

    [19] Diner D J, Beckert J C, Reilly T H, et al. Multi-angle imaging spectroradiometer (MISR) instrument description and experiment overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1072-1087.

    [20] Diner D J, Martonchik J V, Kahn R A, et al. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land[J]. Remote Sensing of Environment, 2005, 94(2): 155-171.

    [21] Wang Lei, Zhang Peng, Sun Ling, et al. Recent researches on aerosol opacity retrieval from multi-angle satellite radiometers[J]. Remote Sensing Information, 2012, 27(1): 110-115.

    [22] Fougnie B, Marbach T, Lacan A, et al. The multi-viewing multi-channel multi-polarisation imager-Overview of the 3MI polarimetric mission for aerosol and cloud characterization[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 219: 23-32.

    [23] Fougnie B, Chimot J, Vázquez-Navarro M, et al. Aerosol retrieval from space—how does geometry of acquisition impact our ability to characterize aerosol properties[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 256: 107304.

    [24] Waquet F, Léon J-F, Cairns B, et al. Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land[J]. Applied Optics, 2009, 48(6): 1228-1236.

    [25] Thomas G E, Carboni E, Sayer A M, et al. Oxford-RAL Aerosol and Cloud (ORAC): Aerosol Retrievals From Satellite Radiometers[M]. Kokhanovsky A.A., de Leeuw G. Satellite Aerosol Remote Sensing over Land. Berlin: Springer, 2009, 193-225.

    [26] Veefkind J P, De Leeuw G, Durkee P A. Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX[J]. Geophysical Research Letters, 1998, 25(16): 3135-3138.

    [27] North P R J. Estimation of aerosol opacity and land surface bidirectional reflectance from ATSR-2 dual-angle imagery: Operational method and validation[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D12): 4149.

    [28] Sogacheva L, Kolmonen P, Virtanen T H, et al. Determination of land surface reflectance using the AATSR dual-view capability[J]. Atmospheric Measurement Techniques, 2015, 8(2): 891-906.

    [29] Tang J K, Xue Y, Yu T, et al. Aerosol optical thickness determination by exploiting the synergy of TERRA and AQUA MODIS[J]. Remote Sensing of Environment, 2005, 94(3): 327-334.

    [30] Mei L L, Xue Y, de Leeuw G, et al. Aerosol optical depth retrieval in the Arctic region using MODIS data over snow[J]. Remote Sensing of Environment, 2013, 128: 234-245.

    [31] Zheng F X, Hou W Z, Sun X B, et al. Optimal estimation retrieval of aerosol fine-mode fraction from ground-based sky light measurements[J]. Atmosphere, 2019, 10(4): 196.

    [32] Hou W Z, Li Z Q, Wang J, et al. Improving remote sensing of aerosol microphysical properties by near-infrared polarimetric measurements over vegetated land: Information content analysis[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(4): 2215-2243.

    [33] Hou W Z, Li Z Q, Song C Y, et al. Study on errors propagation in synchronous atmospheric correction for HJ-2 satellites[C]. Applied Optics and Photonics China (AOPC2019), 2019, 1133: 113380V.

    [34] Hou W, Li Z, Zheng F, et al. Retrieval of aerosol microphysical properties based on the optimal estimation method: Information content analysis for satellite polarimetric remote sensing measurements[C]. Proceedings of the International Archived of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS TC III Mid-term Symposium “Development, Technologies and Applications in Remote Sensing”, 2018, XLII-3, 533-537.

    [35] Donlon C, Berruti B, Buongiorno A, et al. The global monitoring for environment and security (GMES) sentinel-3 mission[J]. Remote Sensing of Environment, 2012, 120: 37-57.

    [36] Llewellyn-Jones D, Remedios J. The advanced along track scanning radiometer (AATSR) and its predecessors ATSR-1 and ATSR-2: An introduction to the special issue[J]. Remote Sensing of Environment, 2012, 116: 1-3.

    [37] Coppo P, Ricciarelli B, Brandani F, et al. SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space[J]. Journal of Modern Optics, 2010, 57(18): 1815-1830.

    [38] Shen M, Duan H, Cao Z, et al. Sentinel-3 OLCI observations of water clarity in large lakes in Eastern China: Implications for SDG 6.3.2 evaluation[J]. Remote Sensing of Environment, 2020, 247: 111950.

    [39] Guan Q, Feng L, Hou X J, et al. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations[J]. Remote Sensing of Environment, 2020, 246: 111890.

    [40] Bi S, Li Y, Wang Q, et al. Inland water atmospheric correction based on turbidity classification using OLCI and SLSTR synergistic observations[J]. Remote Sensing, 2018, 10(7): 1002.

    [41] Kolmonen P, Sogacheva L, Virtanen T H, et al. The ADV/ASV AATSR aerosol retrieval algorithm: Current status and presentation of a full-mission AOD dataset[J]. International Journal of Digital Earth, 2016, 9(6): 1-17.

    [42] Wang M, Gordon H R. Radiance reflected from the ocean-atmosphere system: Synthesis from individual components of the aerosol size distribution[J]. Applied Optics, 1994, 33(30): 7088-7095.

    [43] Durkee P A, Jensen D R, Hindman E E, et al. The relationship between marine aerosol particles and satellite-detected radiance[J]. Journal of Geophysical Research: Atmospheres, 1986, 91(D3): 4063-4072.

    [44] Veefkind J P, de Leeuw G. A new algorithm to determine the spectral aerosol optical depth from satellite radiometer measurements[J]. Journal of Aerosol Science, 1998, 29(10): 1237-1248.

    [45] Flowerdew R J, Haigh J D. An approximation to improve accuracy in the derivation of surface reflectances from multi-look satellite radiometers[J]. Geophysical Research Letters, 1995, 22(13): 1693-1696.

    [46] Veefkind J P, de Leeuw G, Stammes P, et al. Regional distribution of aerosol over land, derived from ATSR-2 and GOME[J]. Remote Sensing of Environment, 2000, 74(3): 377-386.

    [47] Sundstrm A M, Kolmonen P, Sogacheva L, et al. Aerosol retrievals over China with the AATSR dual view algorithm[J]. Remote Sensing of Environment, 2012, 116: 189-198.

    [48] North P, Heckel A, Davies W, et al. Algorithm theoretical basis document (ATBD) instruments: ATSR-2 and AATSR algorithm: SU-ATSR[OL]. 2017. https://climate.esa.int/sites/default/files/Aerosol _cci2_ATBD_ATSR_SU_v4.3.pdf.

    [49] Grey W M, North P R, Los S O. Computationally efficient method for retrieving aerosol optical depth from ATSR-2 and AATSR data[J]. Applied Optics, 2006, 45(12): 2786-2795.

    [50] Grey W M, North P R, Los S O, et al. Aerosol optical depth and land surface reflectance from multiangle AATSR measurements: Global validation and intersensor comparisons[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2184-2197.

    [51] Vermote E F, Tanré D, Deuze J L, et al. Second simulation of the satellite signal in the solar spectrum, 6S: An overview[J]. Geoscience and Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 675-686.

    [52] Thomas G E, Poulsen C A, Curier R L, et al. Comparison of AATSR and SEVIRI aerosol retrievals over the northern Adriatic[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(S1): 85-95.

    [53] Thomas G E, Poulsen C A, Povey A C, et al. Algorithm theoretical basis document (ATBD) AATSR Oxford-RAL aerosol and cloud (ORAC)[OL]. 2017. https://climate.esa.int/sites/default/files/Aerosol _cci2_ATBD_ATSR_ORAC_v3.0.pdf.

    [54] Martonchik J V, Diner D J, Kahn R A, et al. Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1212-1227.

    [55] Martonchik J V, Diner D J, Crean K A, et al. Regional aerosol retrieval results from MISR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(7): 1520-1531.

    [56] Kahn R A, Gaitley B J, Martonchik J V, et al. Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10): D10S04.

    [57] Liu Y, Sarnat J A, Coull B A, et al. Validation of multiangle imaging spectroradiometer (MISR) aerosol optical thickness measurements using Aerosol Robotic Network (AERONET) observations over the contiguous United States[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D6): D06205.

    [58] Martonchik J V, Kahn R A, Diner D J. Retrieval of Aerosol Properties Over Land Using MISR Observations[M]. Kokhanovsky A. A., de Leeuw G. Satellite Aerosol Remote Sensing Over Land. Berlin: Springer, 2009: 267-292.

    [59] Zhang Y, Li Z Q, Qie L L, et al. Retrieval of aerosol optical depth using the empirical orthogonal functions (EOFs) based on PARASOL multi-angle intensity data[J]. Remote Sensing, 2017, 9(6): 578.

    [60] Lyapustin A, Martonchik J, Wang Y J, et al. Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables[J]. Journal of Geophysical Research: Atmosphere, 2011, 116(D3): D03210.

    [61] Lyapustin A, Wang Y J, Laszlo I, et al. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D3): D03211.

    [62] Lyapustin A, Wang Y J, Laszlo I, et al. Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction[J]. Remote Sensing of Environment, 2012, 127: 385-393.

    [63] Zhang Z Y, Wu W L, Fan M, et al. Evaluation of MAIAC aerosol retrievals over China[J]. Atmospheric Environment, 2019, 202: 8-16.

    [64] She L, Zhang H K, Wang W L, et al. Evaluation of the multi-angle implementation of atmospheric correction (MAIAC) aerosol algorithm for Himawari-8 data[J]. Remote Sensing, 2019, 11(23): 2771.

    [65] Xue Y, He X W, Xu H, et al. China Collection 2.0: The aerosol optical depth dataset from the synergetic retrieval of aerosol properties algorithm[J]. Atmospheric Environment, 2014, 95: 45-58.

    [66] Hansen J E, Travis L D. Light scattering in planetary atmospheres[J]. Space Science Reviews, 1974, 16(4): 527-610.

    [67] Deuzé J L, Bréon F M, Devaux C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D5): 4913-4926.

    [68] Herman M, Deuzé J L, Marchand A, et al. Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10): D10S02.

    [69] Fan X H, Goloub P, Deuzé J L, et al. Evaluation of PARASOL aerosol retrieval over North East Asia[J]. Remote Sensing of Environment, 2008, 112(3): 697-707.

    [70] Tanré D, Bréon F M, Deuzé J L, et al. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission[J]. Atmospheric Measurement Techniques, 2011, 4(7): 1383-1395.

    [71] Zhang Y, Li Z Q, Qie L L, et al. Retrieval of aerosol fine-mode fraction from intensity and polarization measurements by PARASOL over East Asia[J]. Remote Sensing, 2016, 8(5): 417.

    [72] Zhang Y, Li Z Q, Liu Z H, et al. Retrieval of the fine-mode aerosol optical depth over East China using a grouped residual error sorting (GRES) method from multi-angle and polarized satellite data[J]. Remote Sensing, 2018, 10(11): 1838.

    [73] Wang H, Sun X B, Yang L K, et al. Aerosol retrieval algorithm based on adaptive land-atmospheric decoupling for polarized remote sensing over land surfaces[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 219: 74-84.

    [74] Wang H, Yang L K, Zhao M R, et al. The normalized difference vegetation index and angular variation of surface spectral polarized reflectance relationships: Improvements on aerosol remote sensing over land[J]. Earth and Space Science, 2019, 6(6): 982-989.

    [75] Wang H, Zhao M R, Yang L K, et al. Retrieval of aerosol optical depth over North China from polarized satellite observations using Re-derived surface properties[J]. Earth and Space Science, 2019, 6(12): 2241-2250.

    [76] Dubovik O, Lapyonok T, Litvinov P, et al. GRASP: a versatile algorithm for characterizing the atmosphere[J]. SPIE Newsroom, 2014.

    [77] Dubovik O, Holben B N, Kaufman Y J, et al. Single-scattering albedo of smoke retrieved from the sky radiance and solar transmittance measured from ground[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D24): 31903-31923.

    [78] Dubovik O, King M D. A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D16): 20673-20696.

    [79] Dubovik O, Smirnov A, Holben B N, et al. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D8): 9791-9806.

    [80] Li L, Che H Z, Derimian Y, et al. Retrievals of fine mode light-absorbing carbonaceous aerosols from POLDER/PARASOL observations over East and South Asia[J]. Remote Sensing of Environment, 2020, 247: 111913.

    [81] Fan C, Fu G L, Noia A D, et al. Use of a neural network-based ocean body radiative transfer model for aerosol retrievals from multi-angle polarimetric measurements[J]. Remote Sensing, 2019, 11(23): 2877.

    [82] Zheng Fengxun, Hou Weizhen, Li Zhengqiang. Optimal estimation retrieval for directional polarimetric camera onboard Chinese Gaofen-5 satellite: An analysis on multi-angle dependence and a posteriori error[J]. Acta Physica Sinica, 2019, 68(4): 040701.

    [83] Li Zhengqiang, Xie Yisong, Hong Jin, et al. Polarimetric satellite sensors for earth observation and applications in atmospheric remote sensing[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(1): 2-17.

    [84] Xie Yisong, Li Zhengqiang, Hou Weizhen, et al. Retrieval of fine-mode aerosol optical depth based on remote sensing measurements of directional polarimetric camera onboard GF-5 satellite[J]. Aerospace Shanghai, 2019, 3(Sup 2): 219-226.

    [85] Huang Honglian, Ti Rufang, Zhang Dongying, et al. Inversion of aerosol optical depth over land from directional polarimetric camera onboard Chinese Gaofen-5 satellite[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 454-461.

    [86] Li Z Q, Hou WQZ, Hong J, et al. Directional polarimetric camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 218: 21-37.

    [87] Wang J, Xu X G, Ding S G, et al. A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 146: 510-528.

    [88] Xu X G, Wang J. UNL-VRTM, A Testbed for Aerosol Remote Sensing: Model Developments and Applications[M]. Kokhanovsky A. A. Springer Series in Light Scattering. Berlin: Springer, 2019: 1-69.

    [89] Yu J, Li M Q, Wang Y L, et al. A decomposition method for large-scale box constrained optimization[J]. Applied Mathematics and Computation, 2014, 231: 9-15.

    [90] Byrd R H, Lu P H, Nocedal J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 1995, 16(5): 1190-1208.

    [91] Litvinov P, Hasekamp O, Cairns B. Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements[J]. Remote Sensing of Environment, 2011, 115(2): 781-792.

    [92] Maignan F, Bréon F M, Fédèle E, et al. Polarized reflectances of natural surfaces: Spaceborne measurements and analytical modeling[J]. Remote Sensing of Environment, 2009, 113(12): 2642-2650.

    [93] Xu X G, Wang J, Henze D K, et al. Constraints on aerosol sources using GEOS-Chem adjoint and MODIS radiances, and evaluation with multisensor (OMI, MISR) data[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(12): 6396-6413.

    [94] Zheng F X, Li Z Q, Hou W Z, et al. Aerosol retrieval study from multiangle polarimetric satellite data based on optimal estimation method[J]. Journal of Applied Remote Sensing, 2020, 14(01): 014516.

    [95] Ge B Y, Mei X D, Li Z Q, et al. An improved algorithm for retrieving high resolution fine-mode aerosol based on polarized satellite data: Application and validation for POLDER-3[J]. Remote Sensing of Environment, 2020, 247: 111894.

    [96] Li Z Q, Zhang Y, Xu H, et al. The fundamental aerosol models over China region: A cluster analysis of the ground-based remote sensing measurements of total columnar atmosphere[J]. Geophysical Research Letters, 2019, 46(9): 4924-4932.

    [97] Waquet F, Léon J F, Goloub P, et al. Maritime and dust aerosol retrieval from polarized and multispectral active and passive sensors[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10): D10S10.

    [98] Waquet F, Goloub P, Deuzé J L, et al. Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D11): D11214.

    [99] Wang H, Sun X B, Sun B, et al. Retrieval of aerosol optical properties over a vegetation surface using multi-angular, multi-spectral, and polarized data[J]. Advances in Atmospheric Sciences, 2014, 31(4): 879-887.

    [100] Wang H, Yang L K, Deng A J, et al. Remote sensing of aerosol optical depth using an airborne polarimeter over North China[J]. Remote Sensing, 2017, 9(10): 979.

    [101] Qie L L, Li Z Q, Sun X B, et al. Improving remote sensing of aerosol optical depth over land by polarimetric measurements at 1640 nm: Airborne test in North China[J]. Remote Sensing, 2015, 7(5): 6240-6256.

    [102] Waquet F, Cairns B, Knobelspiesse K, et al. Polarimetric remote sensing of aerosols over land[J]. Journal of Geophysical Research, 2009, 114(D1): D01206.

    [103] Wu L, Hasekamp O, van Diedenhoven B, et al. Aerosol retrieval from multiangle, multispectral photopolarimetric measurements: Importance of spectral range and angular resolution[J]. Atmospheric Measurement Techniques, 2015, 8(6): 2625-2638.

    [104] Xu F, Dubovik O, Zhai P W, et al. Joint retrieval of aerosol and water-leaving radiance from multispectral, multiangular and polarimetric measurements over ocean[J]. Atmospheric Measurement Techniques, 2016, 9(7): 2877-2907.

    [105] Xu F, van Harten G, Diner D J, et al. Coupled retrieval of aerosol properties and land surface reflection using the airborne multiangle spectropolarimetric imager[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(13): 7004-7026.

    [106] Xu F, Diner D, Dubovik O, et al. A correlated multi-pixel inversion approach for aerosol remote sensing[J]. Remote Sensing, 2019, 11(7): 746.

    [107] Puthukkudy A, Martins J V, Remer L A, et al. Retrieval of aerosol properties from airborne hyper-angular rainbow polarimeter (AirHARP) observations during ACEPOL 2017[J]. Atmospheric Measurement Techniques, 2020, 13(10): 5207-5236.

    [108] Fu G L, Hasekamp O, Rietjens J, et al. Aerosol retrievals from different polarimeters during the ACEPOL campaign using a common retrieval algorithm[J]. Atmospheric Measurement Techniques, 2020, 13(2): 553-573.

    [109] Hou W Z, Wang J, Xu X G, et al. An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 178: 400-415.

    [110] Hou W Z, Wang J, Xu X G, et al. An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis for aerosol parameters and principal components of surface spectra[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 192: 14-29.

    [111] Hou W Z, Wang J, Xu X G, et al. An algorithm for hyperspectral remote sensing of aerosols: 3. Application to the GEO-TASO data in KORUS-AQ field campaign[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253: 107161.

    CLP Journals

    [1] [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Research progress on atmospheric aerosol morphology and mixing state properties based on particle optical detection technology[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 65

    WU Kongyi, HOU Weizhen, SHI Zheng, XU Hua, WEN Yanan. Research Progress of Aerosol Remote Sensing Retrieval Algorithm Based on Satellite Multi-Angle Observation[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(4): 283
    Download Citation