[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2] RAO C N , SOOD A K, SUBRAHMANYAM K S, et al. Graphene: The new two-dimensional nanomaterial[J]. Angew Chem Int Ed, 2009, 48(42): 7752-7777.
[3] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[4] YOUNG R J, KINLOCH I A, GONG L, et al. The mechanics of graphene nanocomposites: A review[J]. Compos Sci Technol, 2012, 72(12): 1459-1476.
[5] CAO X Y, ZHANG J, CHEN S W, et al. 1D/2D nanomaterials synergistic compressible and response rapidly 3D graphene aerogel for piezoresistive sensor[J]. Adv Funct Mater, 2020, 30: 2003618.
[6] HUANG T, HE P, WANG R, et al. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors[J]. Adv Funct Mater, 2019, 29(45): 1903732.
[9] YOU R, LIU Y Q, HAO Y L, et al. Laser fabrication of graphene-based flexible electronics[J]. Adv Mater, 2019, 32(15): 1901981.
[10] YANG H G, XUE T Y, LI F Y, et al. Graphene: Diversified flexible 2D material for wearable vital signs monitoring[J]. Adv Mater Technol, 2018, 4(2): 1800574.
[11] WANG C Y, XIA K L, WANG H M, et al. Advanced carbon for flexible and wearable electronics[J]. Adv Mater, 2018, 31(9): 1801072.
[12] AN J N, LE T S D, LIM C H J, et al. Single‐step selective laser writing of flexible photodetectors for wearable optoelectronics[J]. Adv Sci, 2018, 5(8): 1800496.
[13] GAO W, SINGH N, SONG L, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nat Nano, 2011, 6(8): 496-500.
[14] JIANG T, HUANG R, ZHU Y. Interfacial sliding and buckling of monolayer graphene on a stretchable substrate[J]. Adv Funct Mater, 2014, 24(3): 396-402.
[15] ANAGNOSTOPOULOS G, ANDROULIDAKIS C, KOUKARAS E N, et al. Stress transfer mechanisms at the submicron level for graphene/polymer systems[J]. ACS Appl Mater Interfaces, 2015, 7(7): 4216-4223.
[16] TSOUKLERI G, PARTHENIOS J, PAPAGELIS K, et al. Subjecting a graphene monolayer to tension and compression[J].Small, 2009, 5(21): 2397-2402.
[17] ANDROULIDAKIS C, KOUKARAS E N, FRANK O, et al. Failure processes in embedded monolayer graphene under axial compression[J]. Sci Rep, 2014, 4(1): 1-8.
[18] XU C C, XUE T, GUO J G, et al. An experimental investigation on the mechanical properties of the interface between large-sized graphene and a flexible substrate[J]. J Appl Phys, 2015, 117(16): 164301.
[19] XU C C, XUE T, GUO J G, et al. An experimental investigation on the tangential interfacial properties of graphene: Size effect[J]. Mater Lett, 2015, 161: 755-758.
[21] GUO G D, ZHU Y. Cohesive-shear-lag modeling of interfacial stress transfer between a monolayer graphene and a polymer substrate[J]. J Appl Mech, 2015, 82(3): 031005.
[22] CUI Z, GUO J G. Theoretical investigations of the interfacial sliding and buckling of graphene on a flexible substrate[J]. AIP Adv, 2016, 6(12): 125110.
[23] LEE C, LI Q, KALB W, et al. Frictional characteristics of atomically thin sheets[J]. Science, 2010, 328(5974): 76-80.
[24] DENG Z, SMOLYANITSKY A, LI Q, et al. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale[J]. Nat Mater, 2012, 11(12): 1032-1037.
[25] KOREN E, LORTSCHER E, RAWLINGS C, et al. Adhesion and friction in mesoscopic graphite contacts[J]. Science, 2015, 348(6235): 679-683.
[26] FERRARI A C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Commun, 2007, 143(1/2): 47-57.
[27] MAFRA D L, KONG J, SATO K, et al. Using gate-modulated Raman scattering and electron-phonon interactions to probe single-layer graphene: A different approach to assign phonon combination modes[J]. Phys Rev B, 2012, 86(19): 195434.
[28] FERRALIS N. Probing mechanical properties of graphene with Raman spectroscopy[J]. J Mater Sci, 2010, 45(19): 5135-5149.
[29] COSTA S, BOROWIAK-PALEN E, KRUSZYNSKA M, et al. Characterization of carbon nanotubes by Raman spectroscopy[J]. Mater Sci-Poland, 2008, 26(2): 433-441.
[30] KUZMANY H, PFEIFFER R, HULMAN M, et al. Raman spectroscopy of fullerenes and fullerene-nanotube composites[J]. Philos Trans R Soc A, 2004, 362(1824): 2375-2406.
[31] DEL CORRO E, TARAVILLO M, BAONZA V G. Nonlinear strain effects in double-resonance Raman bands of graphite, graphene, and related materials[J]. Phys Rev B, 2012, 85(3): 033407.
[32] YOON D, SONY W, CHEONG H. Strain-dependent splitting of the double-resonance Raman scattering band in graphene[J]. Phys Rev Lett, 2011, 106(15): 155502.
[33] ZABEL J, NAIR R R, OTT A, et al. Raman spectroscopy of graphene and bilayer under biaxial strain: Bubbles and balloons[J]. Nano Lett, 2012, 12(2): 617-621.1.
[34] GONG L, KINLOCH I A, YOUNG R J, et al. Interfacial stress transfer in a graphene monolayer nanocomposite[J]. Adv Mater, 2010, 22(24): 2694-2697.
[35] YOUNG R J, GONG L, KINLOCH I A, et al. Strain mapping in a graphene monolayer nanocomposite[J]. ACS Nano, 2011, 5(4): 3079-3084.
[36] DAI Z, WANG G, LIU L, et al. Mechanical behavior and properties of hydrogen bonded graphene/polymer nano-interfaces[J]. Compos Sci Technol, 2016, 136: 1-9.
[37] XU C C, XUE T, QIU W, et al. Size effect of the interfacial mechanical behavior of graphene on a stretchable substrate[J]. ACS Appl Mater Interfaces, 2016, 8(40): 27099-27106.
[38] NI Z H, YU T, LU Y H, et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening[J]. ACS Nano, 2008, 2(11): 2301-2305.
[39] MOHIUDDIN T M G, LOMBARDO A, NAIR R R, et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation[J]. Phys Rev B, 2009, 79(20): 205433.
[40] HUANG M Y , YAN H G , CHEN C Y, et al. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy[J] PNAS, 2009, 106(18): 7304-7308.
[41] PROCTOR J E, GREGORYANZ E, NOVOSELOVK S, et al. High-pressure Raman spectroscopy of graphene[J]. Phys Rev B, 2009, 80(7):073408.
[42] ANDROULIDAKIS C, KOUKARAS E N, FRANK O, et al. Failure processes in embedded monolayer graphene under axial compression[J]. Sci Rep, 2014, 4(1): 1-8.
[43] WANG G R, LIU L Q, DAI Z H, et al. Biaxial compressive behavior of embedded monolayer graphene inside flexible poly (methyl methacrylate) matrix[J]. Carbon, 2015, 86: 69-77.
[44] TSOUKLERI G, PARTHENIOS J, PAPAGELIS K, et al. Subjecting a graphene monolayer to tension and compression[J]. Small, 2009, 5(21): 2397-2402.
[45] FRANK O, TSOUKLERI G, PARTHENIOS J, et al. Compression behavior of single-layer graphenes[J]. ACS Nano, 2010, 4(6): 3131-3138.
[46] NEMES-INCZE P, OSVATH Z, KAMARAS K, et al. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy[J]. Carbon, 2008, 46(11): 1435-1442.
[47] LEE C G, WEI X D, LI Q Y, et al. Elastic and frictional properties of graphene[J]. Physica Status Solidi (b), 2009, 246(11/12): 2562-2567.
[48] WEI X D, MENG Z X, RUIZ L, et al. Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation[J]. ACS Nano, 2016, 10(2): 1820-1828.
[49] KOENIG S P, BODDETI N G, DUNN M L, et al. Ultrastrong adhesion of graphene membranes[J]. Nat Nanotechnol, 2011, 6(9): 543-546.
[50] YOON T, SHIN W C, KIM T Y, et al. Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process[J]. Nano Lett, 2012, 12(3): 1448-1452.
[51] LANZA M, WANG Y, SUN H, et al. Morphology and performance of graphene layers on as-grown and transferred substrates[J]. Acta Mech, 2014, 225(4): 1061-1073.
[52] SCHARFENBERG S, MANSUKHANI N, CHIALVO C, et al. Observation of a snap-through instability in graphene[J]. Appl Phys Lett, 2012, 100(2): 021910.
[53] SCHARFENBERG S, ROCKLIN D Z, CHIALVO C, et al. Probing the mechanical properties of graphene using a corrugated elastic substrate[J]. Appl Phys Lett, 2011, 98(9): 091908.
[54] WANG G R, DAI Z H, WANG Y L, et al. Measuring interlayer shear stress in bilayer graphene[J]. Phys Rev Lett, 2017, 119(3): 036101.
[55] COX H L. The elasticity and strength of paper and other fibrous materials[J]. J Appl Phys, 1952, 3(3): 72.
[56] ANAGNOSTOPOULOS G, ANDROULIDAKIS C, KOUKARAS E N, et al. Stress transfer mechanisms at the submicron level for graphene/polymer systems[J]. ACS Appl Mater Interfaces, 2015, 7(7): 4216-4223.
[62] PAN F, CHEN S M, LI Y H, et al. 3D graphene films enable simultaneously high sensitivity and large stretchability for strain sensors[J]. Adv Funct Mater, 2018, 28(40): 1803221.
[63] HE J, ZHOU R H, ZHANG Y F, et al. Strain-insensitive self-powered tactile sensor arrays based on intrinsically stretchable and patternable ultrathin conformal wrinkled graphene-elastomer composite[J]. Adv Funct Mater, 2021, 32(10): 2107281.
[64] LI P, WANG Z, SONG R G, et al. Customizable fabrication for auxetic graphene assembled macrofilms with high conductivity and flexibility[J]. Carbon, 2020, 162: 545-551.
[65] SONG R G, ZHAO X, WANG Z, et al. Sandwiched graphene clad laminate: a binder‐free flexible printed circuit board for 5G antenna application[J]. Adv Eng Mater, 2020, 22(10): 2000451.
[66] ZHANG H Z, WEN P, LI P, et al. Enhanced output performance of flexible piezoelectric energy harvester by using auxetic graphene films as electrodes[J]. Appl Phys Lett, 2020, 117(10): 10390.