• Frontiers of Optoelectronics
  • Vol. 11, Issue 3, 285 (2018)
Xiaoyan HU and Heng WANG*
Author Affiliations
  • College of New Energy and Electronic Engineering, Yancheng Teachers University, Yancheng 224002, China
  • show less
    DOI: 10.1007/s12200-018-0758-4 Cite this Article
    Xiaoyan HU, Heng WANG. ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2018, 11(3): 285 Copy Citation Text show less
    References

    [1] O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740

    [2] Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Gratzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395(6702): 583–585

    [3] Shang Y, Hao S, Yang C, Chen G. Enhancing solar cell efficiency using photon upconversion materials. Nanomaterials (Basel, Switzerland), 2015, 5(4): 1782–1809

    [4] Hao S, Shang Y, Li D, Agren H, Yang C, Chen G. Enhancing dyesensitized solar cell efficiency through broadband near-infrared upconverting nanoparticles. Nanoscale, 2017, 9(20): 6711–6715

    [5] Prabakar K, Son M, Kim W Y, Kim H. TiO2 thin film encapsulated ZnO nanorod and nanoflower dye sensitized solar cells. Materials Chemistry and Physics, 2011, 125(1–2): 12–14

    [6] Chandiran A K, Abdi-Jalebi M, Nazeeruddin M K, Gratzel M. Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS Nano, 2014, 8(3): 2261–2268

    [7] Palomares E, Clifford J N, Haque S A, Lutz T, Durrant J R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. Journal of the American Chemical Society, 2003, 125(2): 475–482

    [8] Plank N O V, Howard I, Rao A, Wilson M W B, Ducati C, Mane R S, Bendall J S, Louca R R M, Greenham N C, Miura H, Friend R H, Snaith H J, Welland M E. Efficient ZnO nanowire solid-state dyesensitized solar cells using organic dyes and core-shell nanostructures. Journal of Physical Chemistry C, 2009, 113(43): 18515–18522

    [9] Barea E, Xu X Q, Gonzalez-Pedro V, Ripollés-Sanchis T, Fabregat-Santiago F, Bisquert J. Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorod based dye sensitized solar cells. Energy & Environmental Science, 2011, 4(9): 3414–3419

    [10] Ueno S, Fujihara S. Effect of an Nb2O5 nanolayer coating on ZnO electrodes in dye-sensitized solar cells. Electrochimica Acta, 2011, 56(7): 2906–2913

    [11] Yang M, Kim D, Jha H, Lee K, Paul J, Schmuki P. Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chemical Communications (Cambridge, England), 2011, 47(7): 2032–2034

    [12] Fiz R, Hernandez-Ramirez F, Fischer T, Lopez-Conesa L, Estrade S, Peiro F, Mathur S. Synthesis, characterization, and humidity detection properties of Nb2O5 nanorods and SnO2/Nb2O5 heterostructures. Journal of Physical Chemistry C, 2013, 117(19): 10086–10094

    [13] Makinen V, Honkala K, Hakkinen H. Atomic layer deposition of aluminum oxide on TiO2 and its impact on N3 dye adsorption from first principles. Journal of Physical Chemistry C, 2011, 115(18): 9250–9259

    [14] Lin C Y, Lai Y H, Chen H W, Chen J G, Kung C W, Vittal R, Ho K C. Highly efficient dye-sensitized solar cell with a ZnO nanosheetbased photoanode. Energy & Environmental Science, 2011, 4(9): 3448–3455

    [15] Zheng H D, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantarzadeh K. Nanostructured tungsten oxide – properties, synthesis, and applications. Advanced Functional Materials, 2011, 21(12): 2175–2196

    [16] Huang Y T, Cheng R, Zhai P, Lee H, Chang Y H, Feng S P. Solution-based synthesis of ultrasmall Nb2O5 nanoparticles for functional thin films in dye-sensitized and perovskite solar cells. Electrochimica Acta, 2017, 236: 131–139

    [17] Chu L, Liu W, Yu A, Qin Z F, Hu R Y, Shu H Z, Luo Q P, Min Y G, Yang J P, Li X A. Effect of TiO2 modification on urchin-like orthorhombic Nb2O5 nanospheres as photoelectrodes in dyesensitized solar cells. Solar Energy, 2017, 153: 584–589

    [18] Le Viet A, Jose R, Reddy M V, Chowdari B V R, Ramakrishna S. Nb2O5 photoelectrodes for dye-sensitized solar cells: choice of the polymorph. Journal of Physical Chemistry C, 2010, 114(49): 21795–21800

    [19] Sayama K, Sugihara H, Arakawa H. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chemistry of Materials, 1998, 10(12): 3825–3832

    [20] Jia Z, Tang Y, Luo L, Li B, Chen Z, Wang J, Zheng H. Room temperature fabrication of single crystal nanotubes of CaSn(OH)6 through sonochemical precipitation. Journal of Colloid and Interface Science, 2009, 334(2): 202–207

    [21] Fang X, Li Y, Zhang S, Bai L, Yuan N Y, Ding J N. The dye adsorption optimization of ZnO nanorod-based dye-sensitized solar cells. Solar Energy, 2014, 105: 14–19

    [22] Jo Y, Yun Y J, Alam Khan M, Jun Y. Densely packed setose ZnO nanorod arrays for dye sensitized solar cells. Synthetic Metals, 2014, 198: 137–141

    Xiaoyan HU, Heng WANG. ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2018, 11(3): 285
    Download Citation