• Chinese Journal of Lasers
  • Vol. 49, Issue 14, 1402208 (2022)
Hao Zhang1、2, Donghua Dai1、2、*, Xinyu Shi1、2, Yanze Li1、2, Luhao Yuan1、2, Guangjing Huang1、2, and Dongdong Gu1、2、3
Author Affiliations
  • 1College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
  • 2Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing 210016, Jiangsu, China
  • 3National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing 210016, Jiangsu, China
  • show less
    DOI: 10.3788/CJL202249.1402208 Cite this Article Set citation alerts
    Hao Zhang, Donghua Dai, Xinyu Shi, Yanze Li, Luhao Yuan, Guangjing Huang, Dongdong Gu. Thermal Behavior of Molten Pool for Laser Directed Energy Deposition of 316L/Inconel 718 Multi-Materials[J]. Chinese Journal of Lasers, 2022, 49(14): 1402208 Copy Citation Text show less
    References

    [1] Xu H Z, Ge H H, Wang J F et al. Effects of process parameters upon chromium element distribution in laser-cladded 316L stainless steel[J]. Chinese Journal of Lasers, 47, 1202004(2020).

    [2] Wang Y, Huang Y L, Yang Y Q. Numerical simulation on coaxial powder feeding laser directional energy deposition of IN718[J]. Chinese Journal of Lasers, 48, 0602115(2021).

    [3] Li L K, Gao X L, Liu J et al. Effects of heat input on microstructure and mechanical properties of Ti6Al4V/Inconel 718 laser-induced brazing joint[J]. Chinese Journal of Lasers, 47, 0502002(2020).

    [4] Chen H Y, Gao S, Deng Q L. Temperature field numerical calculation of laser remelting HVOF sprayed Cr3C2-25% CrNi coatings and experiment test[J]. Electromachining & Mould, 33-37(2011).

    [5] Gu D D, Shi X Y, Poprawe R et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 372, eabg1487(2021).

    [6] Ji X, Sun Z G, Chang L L et al. Microstructure evolution behavior in laser melting deposition of Ti6Al4V/Inconel625 gradient high-temperature resistant coating[J]. Chinese Journal of Lasers, 46, 1102008(2019).

    [7] Liu Z H, Liu Y F, Zhang L L et al. Microstructure and high-temperature friction and wear properties of TiC/CaF2/Inconel 718 composite fabricated using laser melting deposition technique[J]. Chinese Journal of Lasers, 47, 0102008(2020).

    [8] Kim H, Cong W L, Zhang H C et al. Laser engineered net shaping of nickel-based superalloy Inconel 718 powders onto AISI 4140 alloy steel substrates: interface bond and fracture failure mechanism[J]. Materials, 10, 341(2017).

    [9] Bobbio L D, Otis R A, Borgonia J P et al. Additive manufacturing of a functionally graded material from Ti-6Al-4V to invar: experimental characterization and thermodynamic calculations[J]. Acta Materialia, 127, 133-142(2017).

    [10] Onuike B, Heer B, Bandyopadhyay A. Additive manufacturing of Inconel 718: copper alloy bimetallic structure using laser engineered net shaping (LENS™)[J]. Additive Manufacturing, 21, 133-140(2018).

    [11] Yu J, Rombouts M, Maes G et al. Material properties of Ti6Al4V parts produced by laser metal deposition[J]. Physics Procedia, 39, 416-424(2012).

    [12] Nikam S H, Jain N K. Three-dimensional thermal analysis of multi-layer metallic deposition by micro-plasma transferred arc process using finite element simulation[J]. Journal of Materials Processing Technology, 249, 264-273(2017).

    [13] Shi X Y, Gu D D, Li Y Z et al. Thermal behavior and fluid dynamics within molten pool during laser inside additive manufacturing of 316L stainless steel coating on inner surface of steel tube[J]. Optics & Laser Technology, 138, 106917(2021).

    [14] Kamara A M, Marimuthu S, Li L. Finite element modeling of microstructure in laser-deposited multiple layer Inconel 718 parts[J]. Materials and Manufacturing Processes, 29, 1245-1252(2014).

    [15] Du L, Gu D D, Dai D H et al. Relation of thermal behavior and microstructure evolution during multi-track laser melting deposition of Ni-based material[J]. Optics & Laser Technology, 108, 207-217(2018).

    [16] Zhang M, Zhang W H, Xiao J M et al. Numerical simulation of welding residual stress and distortion in T2-Y/Q345 dissimilar materials[J]. Transactions of the China Welding Institution, 41(2020).

    [17] Gao W Y, Zhao S S, Wang Y B et al. Numerical simulation of thermal field and Fe-based coating doped Ti[J]. International Journal of Heat and Mass Transfer, 92, 83-90(2016).

    [18] Li L, Zhang X C, Cui W Y et al. Temperature and residual stress distribution of FGM parts by DED process: modeling and experimental validation[J]. The International Journal of Advanced Manufacturing Technology, 109, 451-462(2020).

    [19] Khairallah S A, Anderson A T, Rubenchik A et al. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 108, 36-45(2016).

    [20] Yang H D, Li Z, Wang S Q. The analytical prediction of thermal distribution and defect generation of Inconel 718 by selective laser melting[J]. Applied Sciences, 10, 7300(2020).

    [21] Yang G, Li Y H, Zhou S Y et al. Thermal-mechanical coupling of regional scanning based on characteristic regions in laser additive manufacturing[J]. Chinese Journal of Lasers, 48, 1002115(2021).

    [22] Shi Q M, Gu D D, Xia M J et al. Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites[J]. Optics & Laser Technology, 84, 9-22(2016).

    [23] Dao M H, Lou J. Simulations of laser assisted additive manufacturing by smoothed particle hydrodynamics[J]. Computer Methods in Applied Mechanics and Engineering, 373, 113491(2021).

    [24] Shimono Y, Oba M, Nomoto S. Solidification simulation of direct energy deposition process by multi-phase field method coupled with thermal analysis[J]. Modelling and Simulation in Materials Science and Engineering, 27, 074006(2019).

    [25] Wirth F, Wegener K. A physical modeling and predictive simulation of the laser cladding process[J]. Additive Manufacturing, 22, 307-319(2018).

    [26] Gu H, Li L. Computational fluid dynamic simulation of gravity and pressure effects in laser metal deposition for potential additive manufacturing in space[J]. International Journal of Heat and Mass Transfer, 140, 51-65(2019).

    Hao Zhang, Donghua Dai, Xinyu Shi, Yanze Li, Luhao Yuan, Guangjing Huang, Dongdong Gu. Thermal Behavior of Molten Pool for Laser Directed Energy Deposition of 316L/Inconel 718 Multi-Materials[J]. Chinese Journal of Lasers, 2022, 49(14): 1402208
    Download Citation