• Chinese Journal of Lasers
  • Vol. 48, Issue 18, 1802012 (2021)
Peng Fan, Jiateng Pan, Yiming Ge, and Yu Zhan*
Author Affiliations
  • College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
  • show less
    DOI: 10.3788/CJL202148.1802012 Cite this Article Set citation alerts
    Peng Fan, Jiateng Pan, Yiming Ge, Yu Zhan. Finite Element Analysis of Residual Stress in TC4/TC11 Titanium Alloy Gradient Material Produced by Laser Additive Manufacturing[J]. Chinese Journal of Lasers, 2021, 48(18): 1802012 Copy Citation Text show less
    References

    [1] Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 35, 2690-2698(2014).

    [2] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [3] Lin X, Huang W D. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica (Informationis), 45, 1111-1126(2015).

    [4] Xie H, Zhang A F, Li D C et al. Research on the cracking of Ti6Al4V-CoCrMo gradient material fabricated by laser metal direct forming[J]. Chinese Journal of Lasers, 40, 1103003(2013).

    [5] Sun C, Sun Y Z, Liu J et al. Temperature field prediction and microstructure analysis of gradient TC4/TC11 titanium alloy deposited by laser additive manufacturing[J]. Aeronautical Manufacturing Technology, 61, 96-101(2018).

    [6] Hao Y B, Zhang G H, Ma G Y et al. Cracking mechanism of SS316/Ni20 composite fabricated by laser engineered net shaping[J]. The Chinese Journal of Nonferrous Metals, 27, 2501-2510(2017).

    [7] Liu S, Wang Y, Liu C S. Application of laser melting deposition technique in preparation of functionally gradient materials[J]. Aeronautical Manufacturing Technology, 61, 47-56(2018).

    [8] Zhan Y, Liu C, Zhang J J et al. Measurement of residual stress in laser additive manufacturing TC4 titanium alloy with the laser ultrasonic technique[J]. Materials Science and Engineering: A, 762, 138093(2019).

    [9] Yao H S, Shi Y S, Zhang W X et al. Numerical simulation of the temperature field in selective laser melting[J]. Applied Laser, 27, 456-460(2007).

    [10] Labudovic M, Hu D, Kovacevic R. A three dimensional model for direct laser metal powder deposition and rapid prototyping[J]. Journal of Materials Science, 38, 35-49(2003).

    [11] Xie R D, Zhu J W, Zhang H et al. Review of detection, analysis and control of temperature field in laser additive manufacturing[J]. Laser & Optoelectronics Progress, 57, 050003(2020).

    [12] Dai K, Shaw L. Finite element analysis of the effect of volume shrinkage during laser densification[J]. Acta Materialia, 53, 4743-4754(2005).

    [13] Yilbas B S, Arif A F M. Material response to thermal loading due to short pulse laser heating[J]. International Journal of Heat and Mass Transfer, 44, 3787-3798(2001).

    [14] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 15, 299-305(1984).

    [15] Liu P, Wan Z Q. Modified method for the prediction of effective elastic modulus of composite materials[J]. Journal of Yangzhou University (Natural Science Edition), 10, 21-23(2007).

    [16] Fahmy A A, Ragai A N. Thermal-expansion behavior of two-phase solids[J]. Journal of Applied Physics, 41, 5108-5111(1970).

    [17] Campbell I E, Sherwood E M. High-temperature materials and technology[J]. Journal of the Electrochemical Society, 115, 115C(1968).

    Peng Fan, Jiateng Pan, Yiming Ge, Yu Zhan. Finite Element Analysis of Residual Stress in TC4/TC11 Titanium Alloy Gradient Material Produced by Laser Additive Manufacturing[J]. Chinese Journal of Lasers, 2021, 48(18): 1802012
    Download Citation