• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 18, Issue 2, 298 (2020)
ZHANG Daming, HE Xiaohai*, REN Chao, WU Xiaohong..., LI Xinglong and FAN Meng|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11805/tkyda2018376 Cite this Article
    ZHANG Daming, HE Xiaohai, REN Chao, WU Xiaohong, LI Xinglong, FAN Meng. Image compression framework based on adaptive sub-sampling and super-resolution reconstruction[J]. Journal of Terahertz Science and Electronic Information Technology , 2020, 18(2): 298 Copy Citation Text show less
    References

    [1] BRUCKSTEIN A,ELAD M,KIMMEL R. Down-scaling for better transform compression[J]. IEEE Transactions on Image Processing, 2003,12(9):1132-1144.

         BRUCKSTEIN A,ELAD M,KIMMEL R. Down-scaling for better transform compression[J]. IEEE Transactions on Image

         BRUCKSTEIN A,ELAD M,KIMMEL R. Down-scaling for better transform compression[J]. IEEE Transactions on Image Processing, 2003,12(9):1132-1144.

         Processing, 2003,12(9):1132-1144.

    [2] ZHANG Jian,XIONG Ruiqin,ZHAO Chen,et al. CONCOLOR: constrained non-convex low-rank model for image deblocking[J].

         IEEE Transactions on Image Processing, 2016,25(3):1246-1259.

         ZHANG Jian,XIONG Ruiqin,ZHAO Chen,et al. CONCOLOR: constrained non-convex low-rank model for image deblocking[J]. IEEE Transactions on Image Processing, 2016,25(3):1246-1259.

         ZHANG Jian,XIONG Ruiqin,ZHAO Chen,et al. CONCOLOR: constrained non-convex low-rank model for image deblocking[J]. IEEE Transactions on Image Processing, 2016,25(3):1246-1259.

    [3] LIN Weisi,LI Dong. Adaptive downsampling to improve image compression at low bit rates[J]. IEEE Transactions on Image Processing, 2006,15(9):2513-2521.

         Processing, 2006,15(9):2513-2521.

         LIN Weisi,LI Dong. Adaptive downsampling to improve image compression at low bit rates[J]. IEEE Transactions on Image Processing, 2006,15(9):2513-2521.

         LIN Weisi,LI Dong. Adaptive downsampling to improve image compression at low bit rates[J]. IEEE Transactions on Image

    [4] super resolution[J]. Journal of Electronic Imaging, 2016,25(1):013004.

         CHEN Honggang,HE Xiaohai,MA Minglang,et al. Low bit rates image compression via adaptive block downsampling and

         CHEN Honggang,HE Xiaohai,MA Minglang,et al. Low bit rates image compression via adaptive block downsampling and super resolution[J]. Journal of Electronic Imaging, 2016,25(1):013004.

         CHEN Honggang,HE Xiaohai,MA Minglang,et al. Low bit rates image compression via adaptive block downsampling and super resolution[J]. Journal of Electronic Imaging, 2016,25(1):013004.

    [5] IEEE International Conference on Image Processing. San Antonio:IEEE, 2007:173-176.

         LI Yang,SUN Xiaoyan,XIONG Hongkai,et al. Incorporating primal sketch based learning into low bit-rate image compression[C]// IEEE International Conference on Image Processing. San Antonio:IEEE, 2007:173-176.

         LI Yang,SUN Xiaoyan,XIONG Hongkai,et al. Incorporating primal sketch based learning into low bit-rate image compression[C]//

         LI Yang,SUN Xiaoyan,XIONG Hongkai,et al. Incorporating primal sketch based learning into low bit-rate image compression[C]// IEEE International Conference on Image Processing. San Antonio:IEEE, 2007:173-176.

    [6] Computer Vision. Berlin:Springer Verlag, 2014:184-199.

         DONG C,LOY C C,HE K M,et al. Learning a deep convolutional network for image super-resolution[C]// European Conference on Computer Vision. Berlin:Springer Verlag, 2014:184-199.

         DONG C,LOY C C,HE K M,et al. Learning a deep convolutional network for image super-resolution[C]// European Conference on

         DONG C,LOY C C,HE K M,et al. Learning a deep convolutional network for image super-resolution[C]// European Conference on Computer Vision. Berlin:Springer Verlag, 2014:184-199.

    [7] Computer Vision. Amsterdam:Springer, 2016:391-407.

         DONG C,LOY C C,TANG X. Accelerating the super-resolution convolutional neural network[C]// European Conference on Computer Vision. Amsterdam:Springer, 2016:391-407.

         DONG C,LOY C C,TANG X. Accelerating the super-resolution convolutional neural network[C]// European Conference on

         DONG C,LOY C C,TANG X. Accelerating the super-resolution convolutional neural network[C]// European Conference on Computer Vision. Amsterdam:Springer, 2016:391-407.

    [8] 2017,37(12):1210002.)

         LEI Guoqing,FAN Ru. Depth map super-resolution based on deep convolutional neural networks[J]. Acta Optica Sinica,

    [9] (XU Ran,ZHANG Junge,HUANG Kaiqi. Image super-resolution using two-channel convolutional neural networks[J]. Journal of

         Image and Graphics, 2016,21(5):556-564.)

    [10] ZHAN Shu,WU Congzhong. Image super-resolution based on deep learning features[J]. Acta Automatica Sinica, 2017,

         43(5):814-821.)

    [11] KIM J,LEE J K,LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington,USA:IEEE Computer Society, 2016:1646-1654.

         IEEE Conference on Computer Vision and Pattern Recognition. Washington,USA:IEEE Computer Society, 2016:1646-

         KIM J,LEE J K,LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington,USA:IEEE Computer Society, 2016:1646-1654.

         1654.

         KIM J,LEE J K,LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the

    [12] CHEN H,HE X,REN C,et al. CISRDCNN:super-resolution of compressed images using deep convolutional neural networks[J].Neurocomputing, 2018(285):204-219.

         CHEN H,HE X,REN C,et al. CISRDCNN:super-resolution of compressed images using deep convolutional neural networks[J].Neurocomputing, 2018(285):204-219.

    [13] ZEYDE R,ELAD M,PROTTER M. On single image scale-up using sparse-representations[C]// International Conference on Curves and Surfaces. Avignon,France:[s.n.], 2010:711-730.

         ZEYDE R,ELAD M,PROTTER M. On single image scale-up using sparse-representations[C]// International Conference on Curves and Surfaces. Avignon,France:[s.n.], 2010:711-730.

    [14] HUANG J B,SINGH A,AHUJA N. Single image super-resolution from transformed self-exemplars[C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston,USA:IEEE Computer Society, 2015:5197-5206.

         HUANG J B,SINGH A,AHUJA N. Single image super-resolution from transformed self-exemplars[C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston,USA:IEEE Computer Society, 2015:5197-5206.

    [15] WEBER A G. The USC-SIPI image database version 5[J]. USC-SIPI Report, 1997(315):1-24.

         WEBER A G. The USC-SIPI image database version 5[J]. USC-SIPI Report, 1997(315):1-24.

    [16] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. Image net classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012(1):1097-1105.

         KRIZHEVSKY A,SUTSKEVER I,HINTON G E. Image net classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012(1):1097-1105.

    [17] DABOV K,FOI A,EGIAZARIAN K. Image denoising with block-matchin g and 3D filter i n g[J]. Proceedings of Society of Photo-Optical Instrumentation Engineers, 2006(6064):354-365.

         DABOV K,FOI A,EGIAZARIAN K. Image denoising with block-matchin g and 3D filter i n g[J]. Proceedings of Society of Photo-Optical Instrumentation Engineers, 2006(6064):354-365.

    ZHANG Daming, HE Xiaohai, REN Chao, WU Xiaohong, LI Xinglong, FAN Meng. Image compression framework based on adaptive sub-sampling and super-resolution reconstruction[J]. Journal of Terahertz Science and Electronic Information Technology , 2020, 18(2): 298
    Download Citation