• High Power Laser and Particle Beams
  • Vol. 36, Issue 7, 079001 (2024)
Qing He1, Dong Li1,2, Li Gu1, Siyuan Luo1,2..., Yudong He1, Biao Li1 and Qiang Wang1,*|Show fewer author(s)
Author Affiliations
  • 1Institute of Electronic Engineering, CAEP, Mianyang 621900, China
  • 2Microsystems and Terahertz Research Center, CAEP, Chengdu 610200, China
  • show less
    DOI: 10.11884/HPLPB202436.240061 Cite this Article
    Qing He, Dong Li, Li Gu, Siyuan Luo, Yudong He, Biao Li, Qiang Wang. Research progress in radio technology based on Rydberg atoms[J]. High Power Laser and Particle Beams, 2024, 36(7): 079001 Copy Citation Text show less
    References

    [1] Kraus J D. Heinrich Hertz-theorist and experimenter[J]. IEEE Transactions on Microwave Theory and Techniques, 36, 824-829(1988).

    [2] Kraus J D, Marhefka R J. Antennas: f all applications[M]. Zhang Wenxun, trans. 3rd ed. Beijing: Publishing House of Electronics Industry, 2018

    [3] Kanda M. Standard antennas for electromagnetic interference measurements and methods to calibrate them[J]. IEEE Transactions on Electromagnetic Compatibility, 36, 261-273(1994).

    [4] Chu L J. Physical limitations of omni-directional antennas[J]. Journal of Applied Physics, 19, 1163-1175(1948).

    [5] Harrington R F. Effect of antenna size on gain, bandwidth, and efficiency[J]. Journal of Research of the National Bureau of Standards, 64D, 1-12(1960).

    [6] McLean J S. A re-examination of the fundamental limits on the radiation Q of electrically small antennas[J]. IEEE Transactions on Antennas and Propagation, 44, 672(1996).

    [7] He Qing. Researches on superconducting microwave resonats f quantum infmation processing[D]. Chengdu: Southwest Jiaotong University, 2022

    [8] Bao Han, Duan Junlei, Jin Shenchao, et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements[J]. Nature, 581, 159-163(2020).

    [9] Ji Wentao, Zhang Lin, Wang Mengqi, et al. Quantum simulation for three-dimensional chiral topological insulator[J]. Physical Review Letters, 125, 020504(2020).

    [10] Zheng Xin, Dolde J, Lochab V, et al. Differential clock comparisons with a multiplexed optical lattice clock[J]. Nature, 602, 425-430(2022).

    [11] Stray B, Lamb A, Kaushik A, et al. Quantum sensing for gravity cartography[J]. Nature, 602, 590-594(2022).

    [12] Jiang Min, Su Haowen, Garcon A, et al. Search for axion-like dark matter with spin-based amplifiers[J]. Nature Physics, 17, 1402-1407(2021).

    [13] Aasi J, Abadie J, Abbott B P, et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nature Photonics, 7, 613-619(2013).

    [14] Jiao Yuechun, Hao Liping, Han Xiaoxuan, et al. Atom-based radio-frequency field calibration and polarization measurement using cesium nDJ Floquet states[J]. Physical Review Applied, 8, 014028(2017).

    [15] Miller S A, Anderson D A, Raithel G. Radio-frequency-modulated Rydberg states in a vapor cell[J]. New Journal of Physics, 18, 053017(2016).

    [16] Jiao Yuechun, Han Xiaoxuan, Yang Zhiwei, et al. Spectroscopy of cesium Rydberg atoms in strong radio-frequency fields[J]. Physical Review A, 94, 023832(2016).

    [17] Jau Y Y, Carter T. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz[J]. Physical Review Applied, 13, 054034(2020).

    [18] Wade C G, Šibalić N, De Melo N R, et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 11, 40-43(2017).

    [19] Sedlacek J A, Schwettmann A, Kübler H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 8, 819-824(2012).

    [20] Xiao Min, Li Yongqing, Jin Shaozheng, et al. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms[J]. Physical Review Letters, 74, 666-669(1995).

    [21] Harris S E. Pondermotive forces with slow light[J]. Physical Review Letters, 85, 4032-4035(2000).

    [22] Li Huaqiang, Hu Jinlian, Bai Jingxu, et al. Rydberg atom-based AM receiver with a weak continuous frequency carrier[J]. Optics Express, 30, 13522-13529(2022).

    [23] Liu Bang, Zhang Lihua, Liu Zongkai, et al. Electric field measurement and application based on Rydberg atoms[J]. Electromagnetic Science, 1, 0020151(2023).

    [24] Holloway C L, Simons M T, Gordon J A, et al. Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging[J]. IEEE Transactions on Electromagnetic Compatibility, 59, 717-728(2017).

    [25] Mohapatra A K, Jackson T R, Adams C S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency[J]. Physical Review Letters, 98, 113003(2007).

    [26] Kanda M. Standard probes for electromagnetic field measurements[J]. IEEE Transactions on Antennas and Propagation, 41, 1349-1364(1993).

    [27] Jing Mingyong, Hu Ying, Ma Jie, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 16, 911-915(2020).

    [28] Artusio-Glimpse A, Simons M T, Prajapati N, et al. Modern RF measurements with hot atoms: A technology review of Rydberg atom-based radio frequency field sensors[J]. IEEE Microwave Magazine, 23, 44-56(2022).

    [29] Holloway C L, Gordon J A, Schwarzkopf A, et al. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 104, 244102(2014).

    [30] Mohapatra A K, Bason M G, Butscher B, et al. A giant electro-optic effect using polarizable dark states[J]. Nature Physics, 4, 890-894(2008).

    [31] Zhang Linjie, Liu Jiasheng, Jia Yue, et al. Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement[J]. Chinese Physics B, 27, 033201(2018).

    [32] Fan Haoquan, Kumar S, Sheng Jiteng, et al. Effect of vapor-cell geometry on Rydberg-atom-based measurements of radio-frequency electric fields[J]. Physical Review Applied, 4, 044015(2015).

    [33] Yuan Jinpeng, Yang Wenguang, Jing Mingyong, et al. Quantum sensing of microwave electric fields based on Rydberg atoms[J]. Reports on Progress in Physics, 86, 106001(2023).

    [34] Fan Haoquan, Kumar S, Kübler H, et al. Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 49, 104004(2016).

    [35] Kumar S, Fan Haoquan, Kübler H, et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells[J]. Optics Express, 25, 8625-8637(2017).

    [36] Liu Xiubin, Jia Fengdong, Zhang Huaiyu, et al. Using amplitude modulation of the microwave field to improve the sensitivity of Rydberg-atom based microwave electrometry[J]. AIP Advances, 11, 085127(2021).

    [37] Kumar S, Fan Haoquan, Kübler H, et al. Atom-based sensing of weak radio frequency electric fields using homodyne readout[J]. Scientific Reports, 7, 42981(2017).

    [38] Li Shaohua, Yuan Jinpeng, Wang Lirong. Improvement of microwave electric field measurement sensitivity via multi-carrier modulation in Rydberg atoms[J]. Applied Sciences, 10, 8110(2020).

    [39] Anderson D A, Paradis E G, Raithel G. A vapor-cell atomic sensor for radio-frequency field detection using a polarization-selective field enhancement resonator[J]. Applied Physics Letters, 113, 073501(2018).

    [40] Holloway C L, Prajapati N, Artusio-Glimpse A B, et al. Rydberg atom-based field sensing enhancement using a split-ring resonator[J]. Applied Physics Letters, 120, 204001(2022).

    [41] Chopinaud A, Pritchard J D. Optimal state choice for Rydberg-atom microwave sensors[J]. Physical Review Applied, 16, 024008(2021).

    [42] Meyer D H, O'brien C, Fahey D P, et al. Optimal atomic quantum sensing using electromagnetically-induced-transparency readout[J]. Physical Review A, 104, 043103(2021).

    [43] Prajapati N, Robinson A K, Berweger S, et al. Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping[J]. Applied Physics Letters, 119, 214001(2021).

    [44] Liao Kaiyu, Tu Haitao, Yang Shuzhe, et al. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms[J]. Physical Review A, 101, 053432(2020).

    [45] Jing Mingyong. Microwave precision measurement based on Rydbergatom superhet[D]. Taiyuan: Shanxi University, 2020

    [46] Li Shaohua, Yuan Jinpeng, Wang Lirong, et al. Enhanced microwave electric field measurement with cavity-assisted Rydberg electromagnetically induced transparency[J]. Frontiers in Physics, 10, 846687(2022).

    [47] Wu Bo, Lin Yi, Wu Fengchuan, . Quantum microwave electric field measurement technology based on enhancement electric field resonator[J]. Acta Physica Sinica, 72, 034204(2023).

    [48] Ding Dongsheng, Liu Zongkai, Shi Baosen, et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system[J]. Nature Physics, 18, 1447-1452(2022).

    [49] Zhang Linjie, Jing Mingyong, Zhang Hao. Quantum sensing of microwave electric fields based on Rydberg atoms[J]. Journal of Shanxi University (Natural Science Edition), 45, 712-722(2022).

    [50] Riedel M F, Böhi P, Li Yun, et al. Atom-chip-based generation of entanglement for quantum metrology[J]. Nature, 464, 1170-1173(2010).

    [51] Gross C, Zibold T, Nicklas E, et al. Nonlinear atom interferometer surpasses classical precision limit[J]. Nature, 464, 1165-1169(2010).

    [52] Strobel H, Muessel W, Linnemann D, et al. Fisher information and entanglement of non-Gaussian spin states[J]. Science, 345, 424-427(2014).

    [53] Penasa M, Gerlich S, Rybarczyk T, et al. Measurement of a microwave field amplitude beyond the standard quantum limit[J]. Physical Review A, 94, 022313(2016).

    [54] Tanasittikosol M, Pritchard J D, Maxwell D, et al. Microwave dressing of Rydberg dark states[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 44, 184020(2011).

    [55] Facon A, Dietsche E K, Grosso D, et al. A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state[J]. Nature, 535, 262-265(2016).

    [56] Tu Haitao, Liao Kaiyu, He Guodong, et al. Approaching the stard quantum limit of a Rydbergatom microwave electrometer[DBOL]. arXiv preprint arXiv: 2307.15617, 2023.

    [57] Cai Minghao, Xu Zishan, You Shuhang, et al. Sensitivity improvement and determination of Rydberg atom-based microwave sensor[J]. Photonics, 9, 250(2022).

    [58] Cai Minghao, You Shuhang, Zhang Shanshan, et al. Sensitivity extension of atom-based amplitude-modulation microwave electrometry via high Rydberg states[J]. Applied Physics Letters, 122, 161103(2023).

    [59] Borówka S, Pylypenko U, Mazelanik M, et al. Continuous wideband microwave-to-optical converter based on room-temperature Rydberg atoms[J]. Nature Photonics, 18, 32-38(2024).

    [60] Gordon J A, Holloway C L, Schwarzkopf A, et al. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms[J]. Applied Physics Letters, 105, 024104(2014).

    [61] Holloway C L, Gordon J A, Jefferts S, et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements[J]. IEEE Transactions on Antennas and Propagation, 62, 6169-6182(2014).

    [62] Song Zhenfei, Feng Zhigang, Liu Xinmeng, et al. Quantum-based determination of antenna finite range gain by using Rydberg atoms[J]. IEEE Antennas and Wireless Propagation Letters, 16, 1589-1592(2017).

    [63] Downes L A, MacKellar A R, Whiting D J, et al. Full-field terahertz imaging at kilohertz frame rates using atomic vapor[J]. Physical Review X, 10, 011027(2020).

    [64] Chen Zhiwen, She Zhenyue, Liao Kaiyu, . Terahertz measurement based on Rydberg atomic antenna[J]. Acta Physica Sinica, 70, 060702(2021).

    [65] Zhou Yanchen, Peng Ruijie, Zhang Jinbiao, et al. Theoretical investigation on the mechanism and law of broadband terahertz wave detection using Rydberg quantum state[J]. IEEE Photonics Journal, 14, 5931808(2022).

    [66] Jiao Yuechun, Zhao Jianming, Jia Suotang. Broadband Rydberg atom-based radio-frequency field sensor[J]. Acta Physica Sinica, 67, 073201(2018).

    [67] Bason M G, Tanasittikosol M, Sargsyan A, et al. Enhanced electric field sensitivity of rf-dressed Rydberg dark states[J]. New Journal of Physics, 12, 065015(2010).

    [68] Tanasittikosol M. Rydberg dark states in external fields[D]. Durham: Durham University, 2011.

    [69] Anderson D A, Schwarzkopf A, Miller S A, et al. Two-photon microwave transitions and strong-field effects in a room-temperature Rydberg-atom gas[J]. Physical Review A, 90, 043419(2014).

    [70] Anderson D A, Miller S A, Raithel G, et al. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell[J]. Physical Review Applied, 5, 034003(2016).

    [71] Yoshida S, Reinhold C O, Burgdörfer J, et al. Photoexcitation of nUnknown environment 'document'305 Rydberg states in the presence of an rf drive field[J]. Physical Review A, 86, 043415(2012).

    [72] Coop S, Palacios S, Gomez P, et al. Floquet theory for atomic light-shift engineering with near-resonant polychromatic fields[J]. Optics Express, 25, 32550-32559(2017).

    [73] Paradis E, Raithel G, Anderson D A. Atomic measurements of high-intensity VHF-band radio-frequency fields with a Rydberg vapor-cell detector[J]. Physical Review A, 100, 013420(2019).

    [74] Cui Shuaiwei, Peng Wenxin, Li Songnong, . Power frequency electric field measurement based on Rydberg atoms[J]. High Voltage Engineering, 49, 644-650(2023).

    [75] Li Wei, Zhang Chungang, Zhang Hao, . Power-frequency electric field measurement based on AC-stark effect of Rydberg atoms[J]. Laser & Optoelectronics Progress, 58, 1702002(2021).

    [76] Liu Weixin, Zhang Linjie, Wang Tao. Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy[J]. Chinese Physics B, 32, 053203(2023).

    [77] Osterwalder A, Merkt F. Using high Rydberg states as electric field sensors[J]. Physical Review Letters, 82, 1831-1834(1999).

    [78] Holloway C, Simons M, Haddab A H, et al. A multiple-band Rydberg atom-based receiver: AM/FM stereo reception[J]. IEEE Antennas and Propagation Magazine, 63, 63-76(2021).

    [79] Meyer D H, Castillo Z A, Cox K C, et al. Assessment of Rydberg atoms for wideband electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 034001(2020).

    [80] Anderson D A, Sapiro R E, Raithel G. An atomic receiver for AM and FM radio communication[J]. IEEE Transactions on Antennas and Propagation, 69, 2455-2462(2021).

    [81] Meyer D H, Kunz P D, Cox K C. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz[J]. Physical Review Applied, 15, 014053(2021).

    [82] Simons M T, Artusio-Glimpse A B, Holloway C L, et al. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning[J]. Physical Review A, 104, 032824(2021).

    [83] Zhang Lihua, Liu Zongkai, Liu Bang, et al. Rydberg microwave-frequency-comb spectrometer[J]. Physical Review Applied, 18, 014033(2022).

    [84] Sedlacek J A, Schwettmann A, Kübler H, et al. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell[J]. Physical Review Letters, 111, 063001(2013).

    [85] Huang Wei, Liang Zhentao, Du Yanxiong, . Rydberg-atom-based electrometry[J]. Acta Physica Sinica, 64, 160702(2015).

    [86] Ren Shengyuan, Jing Mingyong, Zhang Hao, . Atom-based vector measurement of near field scattering field of radio frequency identification tag[J]. Spectroscopy and Spectral Analysis, 42, 298-303(2022).

    [87] Simons M T, Haddab A H, Gordon J A, et al. Embedding a Rydberg atom-based sensor into an antenna for phase and amplitude detection of radio-frequency fields and modulated signals[J]. IEEE Access, 7, 164975-164985(2019).

    [88] Wang Yuhan, Jia Fengdong, Hao Jianhai, et al. Precise measurement of microwave polarization using a Rydberg atom-based mixer[J]. Optics Express, 31, 10449-10457(2023).

    [89] Böhi P, Treutlein P. Simple microwave field imaging technique using hot atomic vapor cells[J]. Applied Physics Letters, 101, 181107(2012).

    [90] Fan Haoquan, Kumar S, Daschner R, et al. Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells[J]. Optics Letters, 39, 3030-3033(2014).

    [91] Meyer D H, Cox K C, Fatemi F K, et al. Digital communication with Rydberg atoms and amplitude-modulated microwave fields[J]. Applied Physics Letters, 112, 211108(2018).

    [92] Cox K C, Meyer D H, Fatemi F K, et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical Review Letters, 121, 110502(2018).

    [93] Deb A B, Kjærgaard N. Radio-over-fiber using an optical antenna based on Rydberg states of atoms[J]. Applied Physics Letters, 112, 211106(2018).

    [94] Jiao Yuechun, Han Xiaoxuan, Fan Jiabei, et al. Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication[J]. Applied Physics Express, 12, 126002(2019).

    [95] Song Zhenfei, Liu Hongping, Liu Xiaochi, et al. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier[J]. Optics Express, 27, 8848-8857(2019).

    [96] Holloway C L, Simons M T, Gordon J A, et al. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver[J]. IEEE Antennas and Wireless Propagation Letters, 18, 1853-1857(2019).

    [97] Menchetti M, Bussey L W, Gilks D, et al. Digitally encoded RF to optical data transfer using excited Rb without the use of a local oscillator[J]. Journal of Applied Physics, 133, 014401(2023).

    [98] Holloway C L, Simons M T, Kautz M D, et al. A quantum-based power standard: Using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides[J]. Applied Physics Letters, 113, 094101(2018).

    [99] Simons M T, Gordon J A, Holloway C L. Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor[J]. Applied Optics, 57, 6456-6460(2018).

    [100] Anderson D A, Sapiro R E, Raithel G. A self-calibrated SI-traceable Rydberg atom-based radio frequency electric field probe and measurement instrument[J]. IEEE Transactions on Antennas and Propagation, 69, 5931-5941(2021).

    [101] Yi Li, Wu Fengchuan, Mao Ruiqi, . Development of three-port fiber-coupled vapor cell probe and its application in microwave digital communication[J]. Acta Physica Sinica, 71, 170702(2022).

    [102] Bian Wu, Zheng Shunyuan, Li Zhongqi, . A transportable Rydberg atomic microwave electrometry[J]. Laser & Optoelectronics Progress, 60, 1106022(2023).

    [103] Bian Wu, Li Zhongqi, Liang Qiongchong, . Comparison experiment of integrated microwave field strength meter based on Rydberg atomic antenna at room temperature[J]. Navigation and Control, 21, 185-191,79(2022).

    [104] Simons M T, Haddab A H, Gordon J A, et al. A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave[J]. Applied Physics Letters, 114, 114101(2019).

    [105] Anderson D A, Sapiro R E, Gonçalves L F, et al. Optical radio-frequency phase measurement with an internal-state Rydberg atom interferometer[J]. Physical Review Applied, 17, 044020(2022).

    [106] Holloway C L, Simons M T, Haddab A H, et al. A “real-time” guitar recording using Rydberg atoms and electromagnetically induced transparency: Quantum physics meets music[J]. AIP Advances, 9, 065110(2019).

    [107] Cardman R, Gonçalves L F, Sapiro R E, et al. Atomic 2D electric field imaging of a Yagi–Uda antenna near-field using a portable Rydberg-atom probe and measurement instrument[J]. Advanced Optical Technologies, 9, 305-312(2020).

    [108] Liu Zongkai, Zhang Lihua, Liu Bang, et al. Deep learning enhanced Rydberg multifrequency microwave recognition[J]. Nature Communications, 13, 1997(2022).

    [109] Meyer D H, Hill J C, Kunz P D, et al. Simultaneous multiband demodulation using a Rydberg atomic sensor[J]. Physical Review Applied, 19, 014025(2023).

    [110] Liu Xiaohong, Liao Kaiyu, Zhang Zuanxian, et al. Continuous-frequency microwave heterodyne detection in an atomic vapor cell[J]. Physical Review Applied, 18, 054003(2022).

    [111] Noaman M, Amarloo H, Piyan R, et al. Vap cell acterization optimization f applications in Rydberg atombased radio frequency sensing[C]. Proceedings of the SPIE 12447, Quantum Sensing, Imaging, Precision Metrology. 2023: 173178.

    Qing He, Dong Li, Li Gu, Siyuan Luo, Yudong He, Biao Li, Qiang Wang. Research progress in radio technology based on Rydberg atoms[J]. High Power Laser and Particle Beams, 2024, 36(7): 079001
    Download Citation