• Nano-Micro Letters
  • Vol. 15, Issue 1, 214 (2023)
Zhen Yu, Yuqing Su, Ruonan Gu, Wei Wu..., Yangxi Li and Shaoan Cheng*|Show fewer author(s)
Author Affiliations
  • State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01191-6 Cite this Article
    Zhen Yu, Yuqing Su, Ruonan Gu, Wei Wu, Yangxi Li, Shaoan Cheng. Micro–Nano Water Film Enabled High-Performance Interfacial Solar Evaporation[J]. Nano-Micro Letters, 2023, 15(1): 214 Copy Citation Text show less
    References

    [1] M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science 333(6043), 712–717 (2011).

    [2] M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12(3), 841–864 (2019).

    [3] C. Xu, M. Gao, X. Yu, J. Zhang, Y. Cheng et al., Fibrous aerogels with tunable superwettability for high-performance solar-driven interfacial evaporation. Nano-Micro Lett. 15(1), 64 (2023).

    [4] B. Yu, Y. Wang, Y. Zhang, Z. Zhang, Self-supporting nanoporous copper film with high porosity and broadband light absorption for efficient solar steam generation. Nano-Micro Lett. 15(1), 94 (2023).

    [5] P. Tao, G. Ni, C. Song, W. Shang, J. Wu et al., Solar-driven interfacial evaporation. Nat. Energy 3(12), 1031–1041 (2018).

    [6] C. Chen, Y. Kuang, L. Hu, Challenges and oportunities for solar evaporation. Joule 3(3), 683–718 (2019).

    [7] F. Wu, S. Qiang, X.-D. Zhu, W. Jiao, L. Liu et al., Fibrous MXene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15(1), 71 (2023).

    [8] Z. Wang, J. Gao, J. Zhou, J. Gong, L. Shang et al., Engineering metal-phenolic networks for solar desalination with directional salt crystallization. Adv. Mater. 35(1), 2209015 (2023).

    [9] T.A. Cooper, S.H. Zandavi, G.W. Ni, Y. Tsurimaki, Y. Huang et al., Contactless steam generation and superheating under one sun illumination. Nat. Commun. 9(1), 5086 (2018).

    [10] Z. Yu, R. Gu, Y. Tian, P. Xie, B. Jin et al., Enhanced interfacial solar evaporation through formation of micro-meniscuses and microdroplets to reduce evaporation enthalpy. Adv. Funct. Mater. 32, 2108586 (2022).

    [11] Z. Yu, R. Gu, Y. Zhang, S. Guo, S. Cheng et al., High-flux flowing interfacial water evaporation under multiple heating sources enabled by a biohybrid hydrogel. Nano Energy 98, 107287 (2022).

    [12] J. Li, X. Wang, Z. Lin, N. Xu, X. Li et al., Over 10 kg m-2 h-1 evaporation rate enabled by a 3D interconnected porous carbon foam. Joule 4(4), 928–937 (2020).

    [13] X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11(8), 1985–1992 (2018).

    [14] J.J. Koh, G.J.H. Lim, S. Chakraborty, Y. Zhang, S. Liu et al., Robust, 3D-printed hydratable plastics for effective solar desalination. Nano Energy 79, 105436 (2021).

    [15] Z. Yu, S. Li, Y. Chen, X. Zhang, J. Chu et al., Intensifying the co-production of vapor and salts by a one-way brine-flowing structure driven by solar irradiation or waste heat. Desalination 539, 115942 (2022).

    [16] Z. Yu, S. Cheng, C. Li, L. Li, J. Yang, Highly efficient solar vapor generator enabled by a 3D hierarchical structure constructed with hydrophilic carbon felt for desalination and wastewater treatment. ACS Appl. Mater. Interfaces 11(35), 32038–32045 (2019).

    [17] Y. Shi, R. Li, Y. Jin, S. Zhuo, L. Shi et al., A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2(6), 1171–1186 (2018).

    [18] Y. Shi, C. Zhang, R. Li, S. Zhuo, Y. Jin et al., Solar evaporator with controlled salt precipitation for zero liquid discharge desalination. Environ. Sci. Technol. 52(20), 11822–11830 (2018).

    [19] X. Liu, F. Chen, Y. Li, H. Jiang, D.D. Mishra et al., 3D hydrogel evaporator with vertical radiant vessels breaking the trade-off between thermal localization and salt resistance for solar desalination of high-salinity. Adv. Mater. 34(36), 2203137 (2022).

    [20] Y. Guo, L.S. de Vasconcelos, N. Manohar, J. Geng, K.P. Johnston et al., Highly elastic interconnected porous hydrogels through self-assembled templating for solar water purification. Angew. Chem. Int. Ed. 61(3), e202114074 (2022).

    [21] Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou et al., Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 13(7), 2087–2095 (2020).

    [22] Q. Zhao, J. Liu, Z. Wu, X. Xu, H. Ma et al., Robust PEDOT:PSS-based hydrogel for highly efficient interfacial solar water purification. Chem. Eng. J. 442, 136284 (2022).

    [23] Q. Zhao, Z. Wu, X. Xu, R. Yang, H. Ma et al., Design of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate-polyacrylamide dual network hydrogel for long-term stable, highly efficient solar steam generation. Sep. Purif. Technol. 300, 121889 (2022).

    [24] Q. Lu, W. Shi, H. Yang, X. Wang, Nanoconfined water-molecule channels for high-yield solar vapor generation under weaker sunlight. Adv. Mater. 32(42), 2001544 (2020).

    [25] Z. Dong, C. Zhang, H. Peng, J. Gong, Q. Zhao, Modular design of solar-thermal nanofluidics for advanced desalination membranes. J. Mater. Chem. A 8(46), 24493–24500 (2020).

    [26] Z.J. Zhang, J. Ma, D. Liu, D. Liu, Y. Han et al., Localized interfacial activation effect within interconnected porous photothermal matrix to promote solar-driven water evaporation. J. Mater. Chem. A 10(19), 10548–10556 (2022).

    [27] L. Li, N. He, B. Jiang, K. Yu, Q. Zhang et al., Highly salt-resistant 3D hydrogel evaporator for continuous solar desalination via localized crystallization. Adv. Funct. Mater. 31(43), 2104380 (2021).

    [28] Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired Mxene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14(1), 10 (2021).

    [29] Y. Xu, C. Tang, J. Ma, D. Liu, D. Qi et al., Low-tortuosity water microchannels boosting energy utilization for high water flux solar distillation. Environ. Sci. Technol. 54(8), 5150–5158 (2020).

    [30] C. Tian, J. Liu, R. Ruan, X. Tian, X. Lai et al., Sandwich photothermal membrane with confined hierarchical carbon cells enabling high-efficiency solar steam generation. Small 16(23), 2000573 (2020).

    [31] H. Liang, Q. Liao, N. Chen, Y. Liang, G. Lv et al., Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew. Chem. Int. Ed. 58, 19041–19046 (2019).

    [32] W. Liu, Z. Chen, G. Zhou, Y. Sun, H.R. Lee et al., 3D porous sponge-inspired electrode for stretchable lithium-ion batteries. Adv. Mater. 28(18), 3578–3583 (2016).

    [33] M. Chen, L. Zhang, S. Duan, S. Jing, H. Jiang et al., Highly stretchable conductors integrated with a conductive carbon nanotube/graphene network and 3D porous poly(dimethylsiloxane). Adv. Funct. Mater. 24(47), 7548–7556 (2014).

    [34] F.-T. Zhang, L. Xu, J.-H. Chen, B. Zhao, X.-Z. Fu et al., Electroless deposition metals on poly(dimethylsiloxane) with strong adhesion as flexible and stretchable conductive materials. ACS Appl. Mater. Interfaces 10(2), 2075–2082 (2018).

    [35] Z. Yu, Y. Li, R. Gu, J. Song, S. Cheng et al., Polymeric solid wastes for efficient and stable solar desalination and the outdoor clean water production performance prediction. Sep. Purif. Technol. 301, 121938 (2022).

    [36] X. Li, G. Ni, T. Cooper, N. Xu, J. Li et al., Measuring conversion efficiency of solar vapor generation. Joule 3(8), 1798–1803 (2019).

    [37] S. Cheng, Z. Yu, Z. Lin, L. Li, Y. Li et al., A lotus leaf like vertical hierarchical solar vapor generator for stable and efficient evaporation of high-salinity brine. Chem. Eng. J. 401, 126108 (2020).

    [38] H.-Y. Zhao, J. Huang, J. Zhou, L.-F. Chen, C. Wang et al., Biomimetic design of macroporous 3D truss materials for efficient interfacial solar steam generation. ACS Nano 16(3), 3554–3362 (2022).

    [39] N. Nishiyama, T. Yokoyama, Water film thickness in unsaturated porous media: Effect of pore size, pore solution chemistry, and mineral type. Water Resour. Res. 57(6), e2020WR029257 (2021).

    [40] S. Li, P. Xiao, W. Zhou, Y. Liang, S.-W. Kuo et al., Bioinspired nanostructured superwetting thin-films in a self-supported form enabled “miniature umbrella” for weather monitoring and water rescue. Nano-Micro Lett. 14(1), 32 (2021).

    [41] H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/Mxene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14(1), 63 (2022).

    [42] F. Sun, T.-T. Li, X. Zhang, B.-C. Shiu, Y. Zhang et al., In situ growth polydopamine decorated polypropylen melt-blown membrane for highly efficient oil/water separation. Chemosphere 254, 126873 (2020).

    [43] T.S. Sileika, H.-D. Kim, P. Maniak, P.B. Messersmith, Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. ACS Appl. Mater. Interfaces 3(12), 4602–4610 (2011).

    [44] Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114(9), 5057–5115 (2014).

    [45] S. Guo, Y. Zhang, H. Qu, M. Li, S. Zhang et al., Repurposing face mask waste to construct floating photothermal evaporator for autonomous solar ocean farming. EcoMat 4(2), e12179 (2022).

    [46] S. Zhang, Y. Yuan, W. Zhang, F. Song, J. Li et al., A bioinspired solar evaporator for continuous and efficient desalination by salt dilution and secretion. J. Mater. Chem. A 9(33), 17985–17993 (2021).

    [47] F. Nawaz, Y. Yang, S. Zhao, M. Sheng, C. Pan et al., Innovative salt-blocking technologies of photothermal materials in solar-driven interfacial desalination. J. Mater. Chem. A 9(30), 16233–16254 (2021).

    [48] M. Sheng, Y. Yang, X. Bin, S. Zhao, C. Pan et al., Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems. Nano Energy 89, 106468 (2021).

    [49] Y. Yang, H. Feng, W. Que, Y. Qiu, Y. Li et al., A diode-like scalable asymmetric solar evaporator with ultra-high salt resistance. Adv. Funct. Mater. 33(6), 2210972 (2023).

    [50] Z. Wei, Y. Wang, C. Cai, Y. Zhang, S. Guo et al., Dual-network liquid metal hydrogel with integrated solar-driven evaporation, multi-sensory applications, and electricity generation via enhanced light absorption and bénard-marangoni effect. Adv. Funct. Mater. 32(41), 2206287 (2022).

    [51] W. Zhou, C. Zhou, C. Deng, L. Chen, X. Zeng et al., High-performance freshwater harvesting system by coupling solar desalination and fog collection with hierarchical porous microneedle arrays. Adv. Funct. Mater. 32(28), 2113264 (2022).

    [52] C. Zhang, Y. Shi, L. Shi, H. Li, R. Li et al., Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge. Nat. Commun. 12(1), 998 (2021).

    [53] M. Fujiwara, K. Takahashi, K. Takagi, Improvement of condensation step of water vapor in solar desalination of seawater and the development of three-ply membrane system. Desalination 508, 115051 (2021).

    [54] W. Han, J. Gao, J. Yu, R. Wang, Z. Xu, Efficient and low-cost solar desalination device with enhanced condensation on nail arrays. Desalination 544, 116132 (2022).

    [55] C. Zhang, Y. Shi, W. Wang, H. Li, R. Li et al., Distinct stage-wise environmental energy harvesting behaviors within solar-driven interfacial water evaporation coupled with convective airflow. Nano Energy 107, 108142 (2023).

    [56] P. Zhang, Q. Liao, H. Yao, H. Cheng, Y. Huang et al., Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J. Mater. Chem. A 6(31), 15303–15309 (2018).

    Zhen Yu, Yuqing Su, Ruonan Gu, Wei Wu, Yangxi Li, Shaoan Cheng. Micro–Nano Water Film Enabled High-Performance Interfacial Solar Evaporation[J]. Nano-Micro Letters, 2023, 15(1): 214
    Download Citation