• Acta Physica Sinica
  • Vol. 68, Issue 18, 188101-1 (2019)
Cong Wang1, Jie Liu1、*, and Han Zhang2、*
Author Affiliations
  • 1School of Physics and Electronics, Shandong Normal University, Jinan 250014, china
  • 2College of Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
  • show less
    DOI: 10.7498/aps.68.20190751 Cite this Article
    Cong Wang, Jie Liu, Han Zhang. Ultrafast pulse lasers based on two-dimensinal nanomaterials[J]. Acta Physica Sinica, 2019, 68(18): 188101-1 Copy Citation Text show less
    Schematic illustration of different kinds of typical ultrathin two-dimensional nanomaterials [7].不同类型的二维纳米材料示意图[7]
    Fig. 1. Schematic illustration of different kinds of typical ultrathin two-dimensional nanomaterials [7]. 不同类型的二维纳米材料示意图[7]
    Atomic structures and band structures of graphene (a), (b) [8], MoS2 (c), (d) [8], Bi2Se3 (e), (f)[10] and BP (g), (h)[8]. Reprinted by permission from Ref. [8]. Copyright 2014 Nature Publishing Group. Reprinted by permission from Ref. [10]. Copyright 2009 Nature Publishing Group.石墨烯(a), (b) [8], MoS2 (c), (d) [8], Bi2Se3 (e), (f) [10]和BP (g), (h)[8]的原子结构和带隙结构
    Fig. 2. Atomic structures and band structures of graphene (a), (b) [8], MoS2 (c), (d) [8], Bi2Se3 (e), (f)[10] and BP (g), (h)[8]. Reprinted by permission from Ref. [8]. Copyright 2014 Nature Publishing Group. Reprinted by permission from Ref. [10]. Copyright 2009 Nature Publishing Group. 石墨烯(a), (b) [8], MoS2 (c), (d) [8], Bi2Se3 (e), (f) [10]和BP (g), (h)[8]的原子结构和带隙结构
    Fabrication methods of two-dimensional materials.二维材料的制备方法
    Fig. 3. Fabrication methods of two-dimensional materials.二维材料的制备方法
    (a) Schematic of the Z-scan measurement setup with permission from Ref. [18] © The Optical Society. (b) Schematic of the two-arm measurement setup. Reprinted by permission from Ref. [19]. Copyright 2017 Nature Publishing Group.(a) Z-scan法实验装置[18]; (b) 双臂测量法实验装置[19]
    Fig. 4. (a) Schematic of the Z-scan measurement setup with permission from Ref. [18] © The Optical Society. (b) Schematic of the two-arm measurement setup. Reprinted by permission from Ref. [19]. Copyright 2017 Nature Publishing Group.  (a) Z-scan法实验装置[18]; (b) 双臂测量法实验装置[19]
    Incorporation schemes for two-dimensional materials: (a) Transferring two-dimensional materials on quartz; (b) transferring two-dimensional materials on high reflection mirror; (c) sandwiching structure; transferring or depositing SA on (d) fiber end, (e) tapered fiber and (f) D-typed fiber.二维材料的耦合方式 (a) 二维材料转移至石英片上; (b) 二维材料转移至高反镜上; (c) 三明治结构, 二维材料转移至光纤端面 (d)、锥形光纤(e)和D型光纤(f)
    Fig. 5. Incorporation schemes for two-dimensional materials: (a) Transferring two-dimensional materials on quartz; (b) transferring two-dimensional materials on high reflection mirror; (c) sandwiching structure; transferring or depositing SA on (d) fiber end, (e) tapered fiber and (f) D-typed fiber.二维材料的耦合方式 (a) 二维材料转移至石英片上; (b) 二维材料转移至高反镜上; (c) 三明治结构, 二维材料转移至光纤端面 (d)、锥形光纤(e)和D型光纤(f)
    (a) Scattergram of pulse width and repetition rate of fiber lasers. (b) Intensity autocorrelation trace, fitted with a sech2 profile. Both seed and compressed traces are normalized to 1. Selected from Ref. [20]. (c) Measured oscilloscope traces of the 212th-harmonic-output optical pulses with permission from Ref. [21] © The Optical Society. (d) Measured autocorrelation traces of the output pulses at the maximum harmonic order with permission from Ref. [21] © The Optical Society. (e) Typical oscilloscope pulse trains of mode-locking. Reprinted by permission from Ref. [103]. Copyright 2018 Wiley-VCH Verlag. (f) Autocorrelation trace with a sech2 fitting. Reprinted by permission from Ref. [103]. Copyright 2018 Wiley-VCH Verla.(a) 光纤激光器的脉宽和重复频率分布图; (b) 种子源和压缩脉冲的自相关曲线[20]; (c), (d) 212阶谐波锁模脉冲输出序列和自相关曲线[21]; (e), (f)锁模脉冲序列和自相关曲线[103]
    Fig. 6. (a) Scattergram of pulse width and repetition rate of fiber lasers. (b) Intensity autocorrelation trace, fitted with a sech2 profile. Both seed and compressed traces are normalized to 1. Selected from Ref. [20]. (c) Measured oscilloscope traces of the 212th-harmonic-output optical pulses with permission from Ref. [21] © The Optical Society. (d) Measured autocorrelation traces of the output pulses at the maximum harmonic order with permission from Ref. [21] © The Optical Society. (e) Typical oscilloscope pulse trains of mode-locking. Reprinted by permission from Ref. [103]. Copyright 2018 Wiley-VCH Verlag. (f) Autocorrelation trace with a sech2 fitting. Reprinted by permission from Ref. [103]. Copyright 2018 Wiley-VCH Verla.  (a) 光纤激光器的脉宽和重复频率分布图; (b) 种子源和压缩脉冲的自相关曲线[20]; (c), (d) 212阶谐波锁模脉冲输出序列和自相关曲线[21]; (e), (f)锁模脉冲序列和自相关曲线[103]
    (a) Layered BP solution; (b) nonlinear transmission of BP SA; (c) passively mode-locked Ho3+/Pr3+ co-doped fluoride fiber laser; (d) autocorrelation trace of the mode-locked pulses. Reprinted by permission from Ref. [179]. Copyright 2016 Nature Publishing Group.(a) 黑磷纳米片溶液; (b) 黑磷饱和吸收体的非线性曲线; (c) Ho3+/Pr3+共掺的被动锁模光纤激光器; (d)锁模脉冲的自相关曲线[179]
    Fig. 7. (a) Layered BP solution; (b) nonlinear transmission of BP SA; (c) passively mode-locked Ho3+/Pr3+ co-doped fluoride fiber laser; (d) autocorrelation trace of the mode-locked pulses. Reprinted by permission from Ref. [179]. Copyright 2016 Nature Publishing Group. (a) 黑磷纳米片溶液; (b) 黑磷饱和吸收体的非线性曲线; (c) Ho3+/Pr3+共掺的被动锁模光纤激光器; (d)锁模脉冲的自相关曲线[179]
    Material typeFabrication methodλ/nm Pulse widthRepetition rateEnergyRef.
    注: LPE, liquid-phase exfoliation; CVD, chemical vapor deposition; ME, mechanical exfoliation; MS, magnetron sputtering; PLD, pulsed laser deposition; HM, hydrothermal method; DFT, direct fusion technique; PM, polyol method; G, graphene; GO, graphene oxide.
    GGCVD1069.8580 ps0.9 MHz0.41 nJ[26]
    CVD1559.12432.47 fs25.51 MHz0.09 nJ[27]
    CVD1565.3148 fs101 MHz15 pJ[28]
    CVD154588 fs21.15 MHz71 pJ[29]
    CVD1531.31.21 ps1.88 MHz[30]
    CVD1559.34345 fs54.28 MHz38.7 pJ[31]
    CVD15611.23 ps2.54 MHz[32]
    CVD1576415 fs6.84 MHz7.3 nJ[33]
    LPE155029 fs18.67 MHz2.8 nJ[20]
    ME1567220 fs15.7 MHz83 pJ[34]
    1554168 fs63 MHz55 pJ[35]
    ME1560900 fs2.22 GHz[22]
    1560992 fs0.49 GHz[36]
    LPE1525—15591 ps8 MHz125 pJ[37]
    CVD1945205 fs58.87 MHz220 pJ[38]
    2060190 fs20.98 MHz2.55 nJ[39]
    CVD278042 ps25.4 MHz0.7 nJ[40]
    GO1556.5615 fs17.09 MHz[41]
    Graphene-Bi2Te3CVD1565.61.17 ps6.91 MHz[42]
    TIsBi2Se3PM1031.746 ps44.6 MHz0.76 nJ[43]
    PM1600360 fs35.45 MHz24.3 pJ[44]
    PM1557.5660 fs12.5 MHz0.14 nJ[45]
    LPE1571579 fs12.54 MHz127 pJ[46]
    LPE1559245 fs202.7 MHz37 nJ[47]
    HM16100.7 ns640.9 MHz481 pJ[48]
    PM1557—15651.57 ps1.21 MHz[49]
    LPE1567/156822 ps8.83 MHz1.1 nJ[50]
    Bi2Te3ME1057.82230 ps1.44 MHz0.6 nJ[51]
    HM1064.47960 ps1.11 MHz[52]
    ME1547600 fs15.11 MHz53 pJ[53]
    PLD1560.8286 fs18.55 MHz0.03 nJ[54]
    HM15571100 fs8.635 MHz29 pJ[55]
    PLD1562.4320 fs2.95 GHz[24]
    1557.43.42 ps388 MHz[56]
    ME1935795 fs27.9 MHz36 pJ[57]
    1909.51.26 ps21.5 MHz[58]
    Sb2Te3LPE1556449 fs22.13 MHz39.6 pJ[59]
    ME1564125 fs22.4 MHz44.6 pJ[60]
    ME1561270 fs34.58 MHz0.03 nJ[61]
    DFT1568.6195 fs33 MHz0.27 nJ[62]
    ME1565128 fs22.32 MHz45 pJ[15]
    MS1558167 fs25.38 MHz0.21 nJ[63]
    PLD154270 fs95.4 MHz[23]
    TMDsWS2MS1560288 fs41.4 MHz0.04 pJ[64]
    LPE1550595 fs[65]
    PLD1560220 fs[66]
    LPE1561/1563369/56324.93/20.39 MHz70/136 pJ[67]
    CVD1565332 fs31.11 MHz14 pJ[68]
    PLD1559.7452 fs1.04 GHz10.9 pJ
    PLD1558.54585—605 fs8.83 MHz1.14 nJ[66]
    LPE19411.3 ps34.8 MHz172 pJ[69]
    MoS2HM1054.3800 ps7 MHz1.3 nJ[70]
    HM1569.5710 fs12.09 MHz0.147 nJ[71]
    ME1550200 fs14.53 MHz[72]
    PLD1561246 fs101.4 MHz1.2 nJ[73]
    LPE1573.7630 fs27.1 MHz0.141 nJ[74]
    HM1556.83 ps2.5 GHz2 pJ[75]
    LPE1530.41.2 ps125 MHz344 pJ[76]
    LPE1555.6737 fs3.27 GHz7 pJ[21]
    LPE1535—15650.96—7.1 ps12.99 MHz[77]
    MS1915.51.25 ps18.72 MHz[78]
    WSe2CVD1557.4163.5 fs63.13 MHz451 pJ[79]
    CVD1863.961.16 ps11.36 MHz2.9 nJ[80]
    MoSe2LPE1912920 fs18.21 MHz[81]
    SnS2LPE1062.66656 ps39.33 MHz57 pJ[82]
    LPE1562.01623 fs29.33 MHz41 pJ[83]
    ReS2CVD15641.25 ps3.43 MHz[84]
    LPE1558.61.6 ps5.48 MHz73 pJ[85]
    BPME1085.57.54 ps13.5 MHz5.93 nJ[86]
    LPE1030.6400 ps46.3 MHz0.70 nJ[87]
    LPE1555102 fs23.9 MHz0.08 nJ[25]
    LPE15621236 fs5.426 MHz[88]
    LPE1549—1575280 fs60.5 MHz[89]
    ME1560.7570 fs6.88 MHz0.74 nJ[16]
    LPE1559.5670 fs8.77 MHz[90]
    ME1558.7786 fs14.7 MHz0.11 nJ[91]
    ME1571.4946 fs5.96 MHz[14]
    ME1560.5272 fs28.2 MHz2.3 nJ[92]
    LPE1532—1570940 fs4.96 MHz1.1 nJ[93]
    LPE1562.8291 fs10.36 MHz[94]
    LPE1562635 fs12.5 MHz[95]
    LPE1555687 fs37.8 MHz[96]
    LPE1561.7882 fs5.47 MHz
    LPE153320.82 MHz0.07 nJ[97]
    ME1910739 fs36.8 MHz0.05 nJ[98]
    LPE18981580 fs19.2 MHz440 pJ[99]
    LPE20941300 fs290 MHz0.39 nJ[100]
    Table 1.

    Performance summary of mode-locked fiber lasers based on graphene, TIs, TMDs and BP.

    基于石墨烯、TIs、TMDs、BP的锁模光纤激光器的性能总结

    Material typeFabrication methodsλPulse widthRepetation rateEnergyRef.
    注: SM, solvothermal method; TEM, thermal evaporation method.
    GG1075 nm70 ns257 kHz46 nJ[107]
    1192.6 nm800 ps111 kHz0.44 μJ[106]
    CVD1560 nm2.06 μs73.06 kHz93.7 nJ[108]
    HM1561 nm4.0 μs27.2 kHz29 nJ[109]
    LPE1555 nm2 μs103 kHz40 nJ[110]
    2.78 μm2.9 μs37.2 kHz1.67 μJ[111]
    GO1558 nm2.3 μs123.5 kHz1.68 nJ[112]
    CVD1044 nm1.7 μs215 kHz8.37 μJ[113]
    2032 nm3.8 μs45 kHz6.71 μJ[114]
    TIsBi2Se3LPE604 nm494 ns187.4 kHz3.1 nJ[115]
    LPE635 nm244 ns454.5 kHz22.3 nJ[116]
    LPE1.06 μm1.95 μs29.1 kHz17.9 nJ[117]
    HM1562.27 nm1.6 μs53.7 kHz0.08 nJ[118]
    PM1.5 μm13.4 μs12.88 kHz13.3 nJ[119]
    LPE1.55 μm2.54 μs212 kHz[120]
    LPE1530.3 nm24 μs40.1 kHz39.8 nJ[121]
    LPE1.98 μm4.18 μs26.8 kHz313 nJ[122]
    Bi2Te3ME1559 nm4.88 μs21.24 kHz89.9 nJ[123]
    SM1557.5 nm3.71 μs49.40 kHz2.8 μJ[124]
    LPE1.5 μm13 μs12.82 kHz1.5 μJ[125]
    ME1.56 μm2.81 μs42.8 kHz12.7 nJ[126]
    Sb2Te3MS1530—1570 nm400 ns338 kHz18 nJ[127]
    SnS21532.7 nm510 ns233 kHz40 nJ[128]
    TMDsMoS2LPE604 nm602 ns118.4 kHz5.5 nJ[129]
    LPE635 nm200 ns512 kHz28.7 nJ[130]
    LPE1030—1070 nm2.88 μs89 kHz126 nJ[131]
    HM1.56 μm3.2 μs91.7 kHz17 nJ[132]
    TEM1550—1575 nm6 μs22 kHz150 nJ[133]
    CVD1529—1570 nm1.92 μs114.8 kHz8.2 nJ[134]
    LPE1519—1567 nm3.3 μs43.47 kHz160 nJ[135]
    PLD1549.8 nm660 ns131 kHz152 nJ[136]
    CVD1549.9 nm1.66 μs173 kHz27.2 nJ[137]
    LPE1550 nm9.92 μs41.45 kHz184 nJ[138]
    LPE1.06 μm5.8 μs28.9 kHz32.6 nJ[139]
    1.56 μm5.4 μs27 kHz63.2 nJ
    2.03 μm1.76 μs48.1 kHz1 μJ
    TMDsWS2LPE604 nm435 ns132.2 kHz6.4 nJ[129]
    CVD1027—1065 nm1.65 μs97 kHz[140]
    LPE1030 nm3.2 μs36.7 kHz13.6 nJ[141]
    LPE1.5 μm0.71 μs134 kHz19 nJ[142]
    LPE1558 nm1.1 μs97 kHz179 nJ[141]
    LPE1547.5 nm958 ns120 kHz44 nJ[143]
    LPE1550 nm3.966 μs77.92 kHz1.2 μJ[138]
    TDMsMoSe2LPE635.4 nm240 ns555 kHz11.1 nJ[130]
    1060 nm2.8 μs60 kHz116 nJ
    LPE1566 nm4.8 μs35.4 kHz825 nJ[144]
    1924 nm5.5 μs21.8 kHz42 nJ
    LPE1550 nm4.04 μs66.8 kHz369 nJ[138]
    WSe2LPE1550 nm4.06 μs85.36 kHz485 nJ[138]
    WSe2LPE1560 nm3.1 μs49.6 kHz33.2 nJ[145]
    TiSe2CVD1530 nm1.12 μs154 kHz75 nJ[146]
    BPLPE635 nm383 ns409.8 kHz27.6 nJ[147]
    ME1064.7 nm2.0 μs76 kHz17.8 nJ[148]
    ME1.0 μm1.16 μs58.73 kHz2.09 nJ[149]
    LPE1.5 μm1.36 μs82.64 kHz148 nJ[150]
    ME1561 nm2.96 μs34.32 kHz194 nJ[151]
    ME1562.8 nm10.32 μs15.78 kHz94.3 nJ[14]
    LPE1912 nm731 μs113.3 kHz632 nJ[152]
    Table 2.

    Performance summary of Q-switched fiber lasers based on graphene, TIs, TMDs and BP.

    基于石墨烯、TIs、TMDs、BP的调Q光纤激光器的性能总结

    MaterialFabrication methodIntegration substrateBulk laser crystalCenter wavelengthPulse width Repetition rate Output power Ref.
    注: VEM, vertical evaporation method; SCCA, spin coating–coreduction approach; DM, dielectric mirror; HRM, high reflective mirror.
    GCVDQuartzTi:Sapphire800 nm63 fs99.4 MHz480 mW[154]
    LPEQuartzYb:YAG1064 nm4 ps88 MHz100 mW[155]
    CVDGMYb:YCOB1.0 μm152 fs[156]
    CVDQuartzYb:SC2SiO51062.8 nm14 ps90.7 MHz480 mW[157]
    VEMQuartzNd:YVO41064 nm8.8 ps84 MHz3.06 W[158]
    CVDSapphireYb:KGW1032 nm325 fs66.3 MHz1.78 W[159]
    LPEDMNd:GdVO41064 nm16 ps43 MHz360 mW[160]
    CVDGlassYb:Y:CaF21051 nm4.8 ps60 MHz370 mW[161]
    CVDGlassYb:Y2SiO51042.6 nm883 fs87 MHz1 W[162]
    LPEDMYb:KGW1031.1 nm428 fs86 MHz504 mW[163]
    LPEDMNd;GdVO41.34 μm11 ps100 MHz1.29 W[164]
    CVDQuartzCr:YAG1516 nm91 fs100 mW[165]
    CVDGMTm:CLNGG2.0 μm354 fsNA[156]
    CVDDMTm:CLNGG2014.4 nm882 fs95 MHz60 mW[166]
    LPEQuartzTm:YAP2023 nm< 10 ps71.8 MHz268 mW[167]
    CVDHRMCr:ZnS2400 nm41 fs108 MHz250 mW[168]
    CVDHRMTm:CLNGG2018 nm729 fs98.7 MHz178 mW[169]
    CVDQuartzTm:YAP1988 nm62.38 MHz256 mW[170]
    GOVEMQuartzNd:GdVO41064 nm4.5 ps70 MHz1.1 W[171]
    VEMQuartzYb:Y2SiO51059 nm763 fs94 MHz700 mW[172]
    Bi2Te3SCCASapphireNd:YVO41064 nm8 ps0.98 GHz180 mW[173]
    MoS2PLDQuartzPr:GdLiF4522 nm46 ps101.4 MHz10 mW[153]
    MoS2/G PLDHRMYb:KYW1037.2 nm236 fs41.84 MHz550 mW[174]
    MoS2/GO LPEDMNd:GdVO41064 nm17 ps1.02 GHz508 mW[175]
    BPLPEDMNd:GdVO41064 nm6.1 ps140 MHz460 mW[176]
    LPEHRMYb,Lu:CALGO1053.4 nm272 fs63.3 MHz820 mW[177]
    LPEQuartzNd;GdVO41.34 μm9.24 ps58.14 MHz350 mW[178]
    LPEHo,Pr:ZBLAN2.8 μm8.6 ps13.98 MHz87.8 mW[179]
    Table 3.

    Performance summary of mode-locked solid-state lasers based on graphene, TIs, TMDs and BP.

    基于石墨烯、TIs、TMDs、BP的锁模固体激光器的性能总结

    MaterialFabrication methodIntegration substrateBulk laser crystal Center wavelengthPulse width Repitition rateOutput powerRef.
    注: SGM, sulfidation grown method; GM, gold mirror.
    GQuartzHo:YAG2097 nm2.6 μs64 kHz264 mW[180]
    QuartzTm:LGGG2003 nm1.29μs43.9 kHz140 mW[181]
    EGSiCCr:ZnSe2.4 μm157 ns169 kHz256 mW[182]
    CVDCaF2Er:Y2O32.7 μm296 ns44.2 kHz114 mW[183]
    HRMEr:ZBLAN2.78 μm2.9 μs37 kHz62 mW[111]
    CVDQuartzEr:CaF22.8 μm1.3 μs62.7 kHz172 mW[184]
    CVDSapphireHo,Pr:LLF2.95 μm937 ns55.7 kHz172 mW[185]
    LPEHRMHo:ZBLAN3.0 μm1.2 μs92 kHz102 mW[186]
    GOLPETm:Y:CaF21969 nm1.32μs20.2 kHz400 mW[187]
    LPEQuartzTm:YLF1928 nm1.0 μs38 kHz379 mW[188]
    TIsBi2Te3LPEQuartzTm:LuAG2023.6 nm620 ns118 kHz2.03 W[189]
    HEMCaF2Ho:ZBLAN2.979 μm1.4 μs81.96 kHz327 mW[190]
    Bi2Te3/G SMSiO2Tm:YAP1980 nm238 ns108 kHz2.34 W[191]
    Er:YSGG2796 nm243 ns88 kHz110 mW
    TMDsMoS2PLDQuartzTm:Ho:YGG2.1 μm410 ns149 kHz206 mW[192]
    PLDGMTm:CLNGG1979 nm4.8 μs110 kHz62 mW[193]
    LPEDMTm:CYAO1850 nm0.5 μs84.9 kHz490 mW[194]
    LPEGlassTm,Ho:YAP2129 nm435 ns55 kHz275 mW[195]
    LPEYAGEr:Lu2O32.84 μm335 ns121 kHz1.03 W[196]
    CVDYAGHo,Pr:LLF2.95 μm621 ns85.8 kHz70 mW[197]
    Tm:GdVO41902 nm0.8 μs49.1 kHz100 mW[198]
    MoS2/BP LPESAMsTm:YAP1993 nm488 ns86 kHz3.6 W[199]
    ReS2LPESapphireEr:YSGG2.8 μm324 ns126 kHz104 mW[200]
    LPEYAGEr:SrF22.79 μm508 ns49 kHz580 mW[201]
    WS2TDSiO2Tm:LuAG2.0 μm660 ns62 kHz1.08 W[202]
    SGMHRMHo3+/Pr3+:ZBLAN 2.86 μm1.73 us131 kHz48 mW[203]
    LPEYAGHo,Pr,LLF2.95 μm654 ns90.4 kHz82 mW[204]
    BPMEQuartzTm:Ho:YAG2.1 μm636 ns122 kHz27 mW[205]
    LPEQuartzTm:YAP1988 nm1.8 us19.3 kHz151 mW[206]
    LPEDMTm:YAP1969 nm181 ns81 kHz3.1 W[207]
    MEHRMTm:YAG2 μm3.12 us11.6 kHz38 mW[208]
    LPEHo:ZBLAN2.9 μm2.4 μs62.5 kHz309 mW[179]
    LPEDMCr:ZnSe2.4 μm189 ns176 kHz36 mW[209]
    LPEEr:CaF22.8 μm955 ns41.9 kHz178 mW[210]
    LPEGMTm:CaYAlO41.93 μm3.1 μs17.7 kHz12 mW[211]
    LPEGMEr:Y2O32.72 μm4.5 μs12.6 kHz6 mW[211]
    LPESiliconEr:SrF22.79 μm702 ns77 kHz180 mW[212]
    LPE— Er:ZBLAN2.8 μm1.2 μs63 kHz485 mW[213]
    LPESiliconEr:CaF22.8 μm955 ns41.9 kHz178 mW[210]
    LPECaF2Ho,Pr:LLF2.95 μm194 ns159 kHz385 mW[214]
    Table 4.

    Performance summary of Q-switched solid-state lasers based on graphene, TIs, TMDs and BP at the wavelength of 2-3 μm.

    在2—3 μm波段下, 基于石墨烯、TIs、TMDs、BP的调Q固体激光器的性能总结

    Cong Wang, Jie Liu, Han Zhang. Ultrafast pulse lasers based on two-dimensinal nanomaterials[J]. Acta Physica Sinica, 2019, 68(18): 188101-1
    Download Citation