• Frontiers of Optoelectronics
  • Vol. 4, Issue 1, 72 (2011)
Shuangying XU, Linhua HU, Jiang SHENG, Dongxing KOU, Huajun TIAN, and Songyuan DAI*
Author Affiliations
  • Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
  • show less
    DOI: 10.1007/s12200-011-0202-5 Cite this Article
    Shuangying XU, Linhua HU, Jiang SHENG, Dongxing KOU, Huajun TIAN, Songyuan DAI. Electron transportation and optical properties of microstructure TiO2 films: applied in dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2011, 4(1): 72 Copy Citation Text show less
    References

    [1] O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740

    [2] Chen D H, Cao L, Huang F Z, Imperia P, Cheng Y B, Caruso R A. Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm). Journal of the American Chemical Society, 2010, 132(12): 4438-4444

    [3] Hart J N, Menzies D, Cheng Y B, Simon G P, Spiccia L. A comparison of microwave and conventional heat treatments of nanocrystalline TiO2. Solar Energy Materials and Solar Cells, 2007, 91(1): 6-16

    [4] Jorge M V, Claudio F R, Calixto S, Bosch P, Lara V H. The influence of surfactants on the roughness of titania Sol-Gel films. Materials Characterization, 2007, 58(3): 233-242

    [5] Menzies D, Dai Q, Cheng Y B, Simon G P, Spiccia L.Improvement of the Zirconia shell in nanostructured titania core-shell working electrodes for dye-sensitized solar cells. Materials Letters, 2005, 59(14-15): 1893-1896

    [6] Nakade S, Saito Y, Kubo W, Kitamura T, Wada Y, Yanagida S. Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells. Journal of Physical Chemistry B, 2003, 107(33): 8607-8611

    [7] Vargas-Florencia D, Edvinsson T, Hagfeldt A, Furo I. Furó i. Pores in nanostructured TiO2 films size distribution and pore permeability. Journal of Physical Chemistry C, 2007, 111(21): 7605-7611

    [8] Boschloo G, Hagfeldt A. Activation energy of electron transport in dye-sensitized TiO2 solar cells. Journal of Physical Chemistry B, 2005, 109(24): 12093-12098

    [9] Nelson J, Haque S A, Klug D R, Durrant J R. Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes. Physical Review B: Condensed Matter, 2001, 63(20): 205321-205330

    [10] Benkstein K D, Kopidakis N, van de Lagemaat J, Frank A J. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. Journal of Physical Chemistry B, 2003, 107(31): 7759-7767

    [11] Liang L Y, Dai S Y, Hu L H, Kong F T, Xu W W, Wang K J. Porosity effects on electron transport in TiO2 films and its application to dye-sensitized solar cells. Journal of Physical Chemistry B, 2006, 110(25): 12404-12409

    [12] Wang R B, Dai S Y. Wang k J. The influence of the nanoparticles TiO2 films in solar cells. Journal of the Graduate School of the Chinese Academy of Sciences., 2001, 18(1): 28-29

    [13] Hu L H, Dai S Y, Wang K J. Structural transformation of nanocrystalline titania grown by Sol-Gel technique and the growth kinetics of crystallites. Acta Physica Sinica, 2003, 52(9): 2135-2139 (in Chinese)

    [14] Pan X, Dai S Y, Wang K J, Hu L H, Shi C W, Guo L, Kong F T. Effects of TiO2 film on the performance of dye-sensitized solar cells based on lonic liquid electrolyte. Chinese Journal of Chemistry, 2005, 23(12): 1579-1583 (in Chinese)

    [15] Hu L H, Dai S Y, Wang K J. Influence of microstructure of nanoporous TiO2 films on the performance of dye-sensitized solar cells. Acta Physica Sinica., 2005, 54(4): 1914-1918 (in Chinese)

    [16] Saito Y, Kambe S, Kitamura T, Wada Y, Yanagida S. Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2004, 83(1): 1-13

    [17] Yuan C D, Cai N, Zhao Y, Sun J, Wei C C, Su Y, Li Y, Ji W W, Zhang C S, Xiong S Z. Optimization of fabrication process in dyesensitized solar cells. Journal of Synthetic Crystals, 2009, 38(1): 53-59 (in Chinese)

    [18] Dürr M, Kron G, Rau U, Werner J H, Yasuda A, Nelles G. Diffusion-limited transport of I - 3 through nanoporous TiO2-polymer gel networks. Journal of Chemical Physics, 2004, 121(22): 11374-11378

    [19] Papageorgin N, Gr tzel M, Infelta P P. On the relevance of mass transport in thin layer nanocrystalline photoelectrochemical solar cells. Solar Energy Materials and Solar Cells, 1996, 44(4): 405-438

    [20] van de Lagemaat J, Benkstein K D, Frank A J. Relation between particle coordination number and porosity in nanoparticle films: implications to dye-sensitized solar cells. Journal of Physical Chemistry B, 2001, 105(50): 12433-12436

    [21] Li S J, Lin Y, Yang S W, Feng S J, Yang L, Xiao X R. Preparation and application of TiO2 film with large pores in dye-sensitized solar cell. Chinese Journal of Inorganic Chemistry., 2007, 23(11): 1965-1969 (in Chinese)

    [22] Hu L H, Dai S Y, Weng J, Xiao S F, Sui Y F, Huang Y, Chen S H, Kong F T, Pan X, Liang L Y, Wang K J. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules. Journal of Physical Chemistry B, 2007, 111(2): 358-362

    [23] Hore S, Vetter C, Kern R, Smit H, Hinsch A. Influence of scattering layers on efficiency of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2006, 90(9): 1176-1188

    [24] Peter L M, Wijayantha K G U. Electron transport and back reaction in dye-sensitized nanocrystalline photovoltaic cells. Electrochimica Acta, 2000, 45(28): 4543-4551

    [25] Liang L Y, Dai S Y, Fang X Q, Hu L H. Research on the electron transport and back-reaction kinetics in TiO2 films applied in dyesensitized solar cells. Acta Physica Sinica., 2008, 57(3): 1956-1962(in Chinese)

    [26] Krüger J, Plass R, Gratzel M, Cameron P J, Peter L M. Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. Journal of Physical Chemistry B, 2003, 107(31): 7536-7539

    [27] Cameron P J, Peter L M. How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells. Journal of Physical Chemistry B, 2005, 109(15): 7392-7398

    Shuangying XU, Linhua HU, Jiang SHENG, Dongxing KOU, Huajun TIAN, Songyuan DAI. Electron transportation and optical properties of microstructure TiO2 films: applied in dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2011, 4(1): 72
    Download Citation