• Chinese Journal of Lasers
  • Vol. 48, Issue 20, 2000001 (2021)
Pu Zhou*, Jinyong Leng, Hu Xiao, Pengfei Ma, Jiangming Xu, Wei Liu, Tianfu Yao, Hanwei Zhang, Liangjin Huang, and Zhiyong Pan
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • show less
    DOI: 10.3788/CJL202148.2000001 Cite this Article Set citation alerts
    Pu Zhou, Jinyong Leng, Hu Xiao, Pengfei Ma, Jiangming Xu, Wei Liu, Tianfu Yao, Hanwei Zhang, Liangjin Huang, Zhiyong Pan. High Average Power Fiber Lasers: Research Progress and Future Prospect[J]. Chinese Journal of Lasers, 2021, 48(20): 2000001 Copy Citation Text show less
    References

    [1] Shcherbakov E A, Fomin V V, Abramov A A et al. Industrial grade 100 kW power CW fiber laser[C]. //Advanced Solid State Lasers 2013, October 27-November 1, 2013, Paris, France, ATh4A.2(2013).

    [2] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).

    [3] Sprangle P, Ting A, Penano J et al. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications[J]. IEEE Journal of Quantum Electronics, 45, 138-148(2009).

    [4] Shi W, Fang Q, Zhu X S et al. Fiber lasers and their applications(Invited)[J]. Applied Optics, 53, 6554-6568(2014).

    [5] Snitzer E, Po H, Hakimi F et al. Double clad, offset core Nd fiber laser[C]. //Optical Fiber Sensors 1988, January 27, 1988. New Orleans, Louisiana, United States, PD5(1988).

    [6] Jeong Y, Sahu J K, Payne D N et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 12, 6088-6092(2004).

    [7] Bonati G, Voelckel H, Gabler T et al. 1.53 kW from a single Yb-doped photonic crystal fiber laser[R](2005).

    [8] Gapontsev V P. High power, kilo-Watt class fiber lasers are winning and securing new opportunities in automotive and heavy industry[C]. //Technical Summary Digest, January 24-29, 2004, Photonics West, San Jose, USA. [S.l.: s.n.], 5332-5335(2004).

    [10] Fomin V et al. 10 kW single mode fiber laser[C]. //Proceeding of 14th International Conference on Laser Optics (LO 2010)(2010).

    [11] Shiner B. The impact of fiber laser technology on the world wide material processing market[C]. //CLEO: Science and Innovations 2013, June 9-14, 2013, San Jose, California, United States, AF2J.1(2013).

    [12] Guo Y, Peng Q, Bo Y et al. 24.6 kW near diffraction limit quasi-continuous-wave Nd∶YAG slab laser based on a stable-unstable hybrid cavity[J]. Optics Letters, 45, 1136-1139(2020).

    [13] Wang D, Du Y L, Wu Y C et al. 20 kW class high-beam-quality CW laser amplifier chain based on a Yb: YAG slab at room temperature[J]. Optics Letters, 43, 3838-3841(2018).

    [14] Nagel S, Metzger B, Bauer D et al. Thin-disk laser system operating above 10 kW at near fundamental mode beam quality[J]. Optics Letters, 46, 965-968(2021).

    [15] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives(Invited)[J]. Journal of the Optical Society of America B, 27, B63-B92(2010).

    [16] Gapontsev V, Gapontsev D, Platonov N et al. 2 kW CW ytterbium fiber laser with record diffraction-limited brightness[C]. //CLEO/Europe. 2005 Conference on Lasers and Electro-Optics Europe, 2005, June 12-17, 2005, Munich, Germany., 508(2005).

    [17] Jiang M, Ma P F, Huang L et al. kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme[J]. High Power Laser Science and Engineering, 5, e30(2017).

    [18] Ehrenreich T, Leveille R, Majid I et al. 1 kW all-glass Tm: fiber laser[J]. Proceedings of SPIE, 7580, 758016(2010).

    [19] Anderson B M, Soloman J, Flores A. 1.1 kW, beam combinable thulium doped all-fiber amplifier[J]. Proceedings of SPIE, 11665, 116650B(2021).

    [20] Gapontsev V P. New milestones in development of super high power fiber lasers[C]. //Photonics West 2006, OE/LASE, January 21-26, 2006, San Jose, California, United States. [S.l.: s.n.](2006).

    [21] Snitzer E, Po H, Hakimi F et al. Erbium fiber laser amplifier at 1.55 μm with pump at 1.49 μm amd Yb sensitized Er oscillator[C]. //Optical Fiber Communication, January 25, 1988, New Orleans, Louisiana, PD2(1988).

    [22] Minelly J D, Laming R I, Townsend J E et al. High-gain fiber power amplifier tandem-pumped by a 3-W multistripe diode[C]. //Optical Fiber Communication Conference 1992, February 2, 1992, San Jose, California, United States, TuG2(1992).

    [24] Kobyakov A, Sauer M, Chowdhury D. Stimulated Brillouin scattering in optical fibers[J]. Advances in Optics and Photonics, 2, 1-59(2009).

    [25] Liu W, Ma P F, Lü H et al. General analysis of SRS-limited high-power fiber lasers and design strategy[J]. Optics Express, 24, 26715-26721(2016).

    [26] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 12, 429-484(2020).

    [27] Tao R M, Wang X L, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-19(2018).

    [28] Piccoli R, Mechin D, Robin T et al. Lifetime reduction due to photodarkening phenomenon in ytterbium-doped fibers and rate equation term[J]. Optics Letters, 38, 4370-4373(2013).

    [29] Mattsson K E. Photo darkening of rare earth doped silica[J]. Optics Express, 19, 19797-19812(2011).

    [30] Zhang H W, Zhou P, Wang X L et al. Simulation of fiber optical discharge effect of double cladding fiber[J]. Acta Optica Sinica, 33, 0706015(2013).

    [31] Xiao Q R, Tian J D, Huang Y S et al. Internal features of fiber fuse in a Yb-doped double-clad fiber at 3 kW[J]. Chinese Physics Letters, 35, 054201(2018).

    [32] Sun J Y, Xiao Q R, Li D et al. Fiber fuse behavior in kW-level continuous-wave double-clad field laser[J]. Chinese Physics B, 25, 014204(2016).

    [33] Injeyan H, Goodno G D. High power laser handbook[M](2011).

    [34] White J O, Vasilyev A, Cahill J P et al. Suppression of stimulated Brillouin scattering in optical fibers using a linearly chirped diode laser[J]. Optics Express, 20, 15872-15881(2012).

    [35] Kurkov A S. Oscillation spectral range of Yb-doped fiber lasers[J]. Laser Physics Letters, 4, 93-102(2007).

    [36] Zhou P, Wang X, Xiao H et al. Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges[J]. Laser Physics, 22, 823-831(2012).

    [37] Yu H, Zhang H, Lü H et al. 3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser[J]. Applied Optics, 54, 4556-4560(2015).

    [38] Beier F, Hupel C, Kuhn S et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier[J]. Optics Express, 25, 14892-14899(2017).

    [39] Fang Q, Li J H, Shi W et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics Journal, 9, 1-7(2017).

    [40] Wang Y Y, Gao C, Tang X et al. 30/900 Yb-doped aluminophosphosilicate fiber presenting 6.85-kW laser output pumped with commercial 976-nm laser diodes[J]. Journal of Lightwave Technology, 36, 3396-3402(2018).

    [41] Zhan H, Wang Y Y, Peng K et al. 8.74 kW pump-gain integrated functional laser fiber[C]. //Optical Fiber Communication Conference 2018, March 11-15, 2018, San Diego, California, United States, W2A.2(2018).

    [42] Lin A X, Zhan H, Peng K et al. 10 kW-level pump-gain integrated functional laser fiber[C]. //2018 Asia Communications and Photonics Conference (ACP), October 26-29, 2018, Hangzhou, China., 1-3(2018).

    [43] Lin H H, Xu L X, Li C Y et al. 10.6 kW high-brightness cascade-end-pumped monolithic fiber lasers directly pumped by laser diodes in step-index large mode area double cladding fiber[J]. Results in Physics, 14, 102479(2019).

    [44] Chen X L, He Y, Xu Z W et al. Theoretical and experimental investigation of a 10-kW high-efficiency 1070-nm fiber amplifier[J]. Chinese Journal of Lasers, 47, 1006001(2020).

    [45] Xiao H, Leng J Y, Zhou P et al. High power tandem-pumped Yb-doped fiber laser[J]. Chinese Journal of Lasers, 44, 0201007(2017).

    [46] Naderi S, Dajani I, Grosek J et al. Theoretical analysis of effect of pump and signal wavelengths on modal instabilities in Yb-doped fiber amplifiers[J]. Proceedings of SPIE, 8964, 89641W(2014).

    [47] Yu H L, Wang X L, Zhou P et al. Beam quality and photodarkening comparison of tandem-pumped and directly diode-pumped ytterbium-doped fiber amplifiers[J]. Chinese Optics Letters, 12, s20604(2014).

    [48] Codemard C A, Sahu J K, Nilsson J. Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 46, 1860-1869(2010).

    [49] Zhou P, Xiao H, Leng J Y et al. High-power fiber lasers based on tandem pumping[J]. Journal of the Optical Society of America B, 34, A29-A36(2017).

    [50] Wirth C, Schmidt O, Kliner A et al. High-power tandem pumped fiber amplifier with an output power of 2.9 kW[J]. Optics Letters, 36, 3061-3063(2011).

    [51] Xiao H, Leng J Y, Zhang H W et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J]. Applied Optics, 54, 8166-8169(2015).

    [52] Ma P F, Xiao H, Meng D R et al. High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression[J]. High Power Laser Science and Engineering, 6, 53-59(2018).

    [53] Zhou P, Xiao H, Leng J Y et al. Recent development on high-power tandem-pumped fiber laser[J]. Proceedings of SPIE, 10016, 100160M(2016).

    [54] Wang Z H, Xiao Q R, Wang X J et al. 3000 W tandem pumped all-fiber laser based on domestic fiber[J]. Acta Physica Sinica, 67, 024205(2018).

    [55] Park J S, Kim T H, Oh Y J et al. Investigation of photodarkening in tandem-pumped Yb-doped fibers[J]. Optics Express, 28, 27316-27323(2020).

    [56] Lim K J, Seah SamuelK W, Ye J Y et al. High absorption large-mode area step-index fiber for tandem-pumped high-brightness high-power lasers[J]. Photonics Research, 8, 1599-1604(2020).

    [57] Popp A, Voss A, Graf T et al. Thin-disk laser-pumping of ytterbium-doped fiber laser[J]. Laser Physics Letters, 8, 887-894(2011).

    [58] Yao T F, Ji J H, Nilsson J. Ultra-low quantum-defect heating in ytterbium-doped aluminosilicate fibers[J]. Journal of Lightwave Technology, 32, 429-434(2014).

    [59] Seah C P, Lim W Y W, Chua S L. A 4 kW fiber amplifier with good beam quality employing confined-doped gain fiber[C]. //Advanced Solid State Lasers 2018, November 4-8, 2018, Boston, Massachusetts, United States, AM2A.2(2018).

    [60] Tian J D, Xiao Q R, Li D et al. Tandem-pumped high-power narrow-linewidth fiber laser tunable from 1060-1090 nm[J]. Journal of Lightwave Technology, 38, 1461-1467(2020).

    [61] Liu F, Liu P, Feng X et al. Tandem-pumped, tunable thulium-doped fiber laser in 2.1 μm wavelength region[J]. Optics Express, 27, 8283-8290(2019).

    [62] Fan D Y. The review of high power laser development in China[C]. //The 12th Laser Technology and Optoelectronics Conference, March 12-15, 2017, Shanghai, China.(2017).

    [63] Liu Z J, Jin X X, Su R T et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China Information Sciences, 62, 1-32(2019).

    [64] Ma P F, Xiao H, Meng D R et al. 4 kW all-fiber amplifier with narrow linewidth based on tandem-pumped[J]. Chinese Journal of Lasers, 45, 0715002(2018).

    [65] Gao C, Dai J Y, Li F Y et al. Homemade 10-kW ytterbium-doped aluminophosphosilicate fiber for tandem pumping[J]. Chinese Journal of Lasers, 47, 0315001(2020).

    [66] Wang X J, Yan P, Wang Z H et al. The 5.4 kW output power of the ytterbium-doped tandempumping[C]. //Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, California, AM2M.5(2018).

    [67] Wang Y, Yang J L, Huang C Y et al. High power tandem-pumped thulium-doped fiber laser[J]. Optics Express, 23, 2991-2998(2015).

    [68] Dong H H, Wang S K, Wang Z Y et al. Spectral performance of Yb 3+-doped silica fiber for 1018 nm tandem-pumping technology[J]. Chinese Journal of Lasers, 48, 1103001(2021).

    [69] Jebali M A, Maran J N. LaRochelle S. 264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping[J]. Optics Letters, 39, 3974-3977(2014).

    [70] Creeden D, Johnson B R, Setzler S D et al. Resonantly pumped Tm-doped fiber laser with >90% slope efficiency[J]. Optics Letters, 39, 470-473(2014).

    [71] Jin X, Lee E, Luo J et al. High-efficiency ultrafast Tm-doped fiber amplifier based on resonant pumping[J]. Optics Letters, 43, 1431-1434(2018).

    [72] Hemming A, Simakov N, Davidson A et al. A monolithic cladding pumped holmium-doped fibre laser[C]. //CLEO: Science and Innovations 2013, June 9-14, 2013, San Jose, California, United States, CW1M.1(2013).

    [73] Smith A V, Smith J J. Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers[J]. Optics Express, 20, 24545-24558(2012).

    [74] Stihler C, Jauregui C, Tünnermann A et al. Pump-power-noise influence on mode instabilities in high-power fiber laser systems[C]. //2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 23-27, 2019, Munich, Germany.(2019).

    [75] Stihler C, Jauregui C, Otto H J et al. Controlling mode instabilities at 628 W average output power in an Yb-doped rod-type fiber amplifier by active modulation of the pump power[J]. Proceedings of SPIE, 10083, 100830P(2017).

    [76] Miao Y, Ma P F, Liu W et al. First demonstration of Co-pumped single- frequency Raman fiber amplifier with spectral-broadening-free property enabled by ultra-low noise pumping[J]. IEEE Access, 6, 71988-71993(2018).

    [77] Liu W, Ma P F, Miao Y et al. Intrinsic mechanism for spectral evolution in single-frequency Raman fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-8(2018).

    [78] Wang Z H, Xiao Q R, Huang Y S et al. Dual-wavelength bidirectional pumped high-power Raman fiber laser[J]. High Power Laser Science and Engineering, 7, e5(2019).

    [79] Hong S, Feng Y T, Nilsson J. Multi-wavelength diode-pumping of fiber Raman laser[C]. //Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, California, SM1K, 6(2018).

    [80] Ye J, Zhang Y, Xu J M et al. Broadband pumping enabled flat-amplitude multi-wavelength random Raman fiber laser[J]. Optics Letters, 45, 1786-1789(2020).

    [81] Dominic V, MacCormack S, Waarts R et al. 110 W fiber laser[C]. //Conference on Lasers and Electro-Optics 1999, May 23-26, 1999, Baltimore, Maryland, United States, CPD11(1999).

    [82] Limpert J, Liem A, Zellmer H et al. 500 W continuous-wave fibre laser with excellent beam quality[J]. Electronics Letters, 39, 645-647(2003).

    [83] Liu C H, Galvanauskas A, Ehlers B et al. 810-W single transverse mode Yb-doped fiber laser[C]. //Advanced Solid-State Photonics, February 1-4, 2004, Santa Fe, New Mexico, PDP17(2004).

    [84] Gapontsev V P, Platonov N S, Shkurihin O et al. 400 W low-noise single-mode CW ytterbium fiber laser with an integrated fiber delivery[C]. //Conference on Lasers and Electro-Optics 2003, June 1-6, 2003, Baltimore, Maryland, United States, CThPDB9(2003).

    [85] Jeong Y, Sahu J K, Baek S et al. Cladding-pumped ytterbium-doped large-core fiber laser with 610 W of output power[J]. Optics Communications, 234, 315-319(2004).

    [86] Fang Q, Shi W, Qin Y G et al. 2.5 kW monolithic continuous wave (CW) near diffraction-limited fiber laser at 1080 nm[J]. Laser Physics Letters, 11, 105102(2014).

    [87] Yu H, Zhang H, Lü H et al. 3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser[J]. Applied Optics, 54, 4556-4560(2015).

    [88] Xiao H, Leng J, Zhang H et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J]. Applied Optics, 54, 8166-8169(2015).

    [89] Yan P, Huang Y S, Sun J Y et al. 3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes[J]. Laser Physics Letters, 14, 080001(2017).

    [90] Zheng J K, Zhao W, Zhao B Y et al. 4.62 kW excellent beam quality laser output with a low-loss Yb/Ce co-doped fiber fabricated by chelate gas phase deposition technique[J]. Optical Materials Express, 7, 1259-1266(2017).

    [91] Dai S J, He B, Zhou J et al. 1.5 kW near single-mode all-fiber laser[J]. Chinese Journal of Lasers, 40, 0702001(2013).

    [92] Kalyoncu S K, Mete B, Yenıay A. Diode-pumped triple-clad fiber MOPA with an output power scaling up to 4.67 kW[J]. Optics Letters, 45, 1870-1873(2020).

    [93] Mashiko Y, Nguyen H K, Kashiwagi M et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression[J]. Proceedings of SPIE, 9728, 972805(2016).

    [94] Ikoma S, Nguyen H K, Kashiwagi M et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing[J]. Proceedings of SPIE, 10083, 100830Y(2017).

    [95] Shima K, Ikoma S, Uchiyama K et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing[J]. Proceedings of SPIE, 10512, 105120C(2018).

    [96] Takubo Y, Ikoma S, Uchiyama K et al. Dynamic analysis of materials processing with 5-kW single-mode fiber laser[J]. Proceedings of SPIE, 10897, 1089712(2019).

    [97] Wang Y, Kitahara R, Kiyoyama W et al. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad[J]. Proceedings of SPIE, 11260, 1126022(2020).

    [98] Krämer R G, Möller F, Matzdorf C et al. Extremely robust femtosecond written fiber Bragg gratings for an ytterbium-doped fiber oscillator with 5 kW output power[J]. Optics Letters, 45, 1447-1450(2020).

    [99] Roohforouz A, Chenar R E, Azizi S et al. Effect of pumping configuration on the transverse mode instability power threshold in a 3.02 kW fiber laser oscillator[C]. //Laser Applications Conference 2019, September 29-October 3, 2019, Vienna, Austria, JM5A.29(2019).

    [100] Yang B L, Zhang H W, Ye Q et al. 4.05 kW monolithic fiber laser oscillator based on home-made large mode area fiber Bragg gratings[J]. Chinese Optics Letters, 16, 031407(2018).

    [101] Yang B L, Wang X L, Ye Y et al. Output power of all fiber laser oscillator exceeds 6 kW[J]. Chinese Journal of Lasers, 47, 0116001(2020).

    [102] Xi X M, Wang P, Yang B L et al. The output power of all fiber laser oscillator exceeds 7 kW[J]. Chinese Journal of Lasers, 48, 0116001(2021).

    [104] Wang X L, Zhang H W, Yang B L et al. This paper introduces the development of high power ytterbium doped fiber oscillator[EB/OL]. (2021-03-02)[2021-04-01]. http://www.oeshow.cn/informationdetail/12337

    [105] Turitsyn S K, Babin S A, El-Taher A E et al. Random distributed feedback fibre laser[J]. Nature Photonics, 4, 231-235(2010).

    [106] Turitsyn S K, Babin S A, Churkin D V et al. Random distributed feedback fibre lasers[J]. Physics Reports, 542, 133-193(2014).

    [107] Churkin D V, Sugavanam S, Vatnik I D et al. Recent advances in fundamentals and applications of random fiber lasers[J]. Advances in Optics and Photonics, 7, 516-569(2015).

    [108] Wang Z N, Wu H, Fan M Q et al. High power random fiber laser with short cavity length: theoretical and experimental investigations[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 10-15(2015).

    [109] Du X Y, Zhang H W, Xiao H et al. High-power random distributed feedback fiber laser: from science to application[J]. Annalen Der Physik, 528, 649-662(2016).

    [110] Zhou P, Ye J, Xu J M et al. The rising power of random distributed feedback fiber laser[J]. Proceedings of SPIE, 10619, 106190A(2018).

    [111] Du X Y, Zhang H W, Ma P F et al. Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser[J]. Optics Letters, 40, 5311-5314(2015).

    [112] Zhang H W, Xiao H, Zhou P et al. Random distributed feedback Raman fiber laser with short cavity and its temporal properties[J]. IEEE Photonics Technology Letters, 26, 1605-1608(2014).

    [113] Zhang H, Zhou P, Xiao H et al. Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power[J]. Laser Physics Letters, 11, 075104(2014).

    [114] Du X Y, Zhang H W, Wang X L et al. Short cavity-length random fiber laser with record power and ultrahigh efficiency[J]. Optics Letters, 41, 571-574(2016).

    [115] Zhang H W, Huang L, Zhou P et al. More than 400 W random fiber laser with excellent beam quality[J]. Optics Letters, 42, 3347-3350(2017).

    [116] Xu J M, Lou Z K, Ye J et al. Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects[J]. Optics Express, 25, 5609-5617(2017).

    [117] Zhang H W, Huang L, Song J X et al. Quasi-kilowatt random fiber laser[J]. Optics Letters, 44, 2613-2616(2019).

    [118] Wang Z H, Yan P, Huang Y S et al. An efficient 4-kW level random fiber laser based on a tandem-pumping scheme[J]. IEEE Photonics Technology Letters, 31, 817-820(2019).

    [119] Xu J M, Ye J, Zhou P et al. Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality[J]. Science China Technological Sciences, 62, 80-86(2019).

    [120] Xu J M, Huang L, Jiang M et al. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output[J]. Photonics Research, 5, 350-354(2017).

    [121] Wang Z H, Yu W L, Tian J D et al. 5.1 kW tandem-pumped fiber amplifier seeded by random fiber laser with high suppression of stimulated Raman scattering[J]. IEEE Journal of Quantum Electronics, 57, 1-9(2021).

    [122] Dontsova E I, Kablukov S I, Vatnik I D et al. Frequency doubling of Raman fiber lasers with random distributed feedback[J]. Optics Letters, 41, 1439-1442(2016).

    [123] Wu H S, Wang P, Song J X et al. High power tunable mid-infrared optical parametric oscillator enabled by random fiber laser[J]. Optics Express, 26, 6446-6455(2018).

    [124] Zhang H W, Zhou P, Wang X et al. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation[J]. Optics Express, 23, 17138-17144(2015).

    [125] Han B, Rao Y J, Wu H et al. Low-noise high-order Raman fiber laser pumped by random lasing[J]. Optics Letters, 45, 5804-5807(2020).

    [126] Pask H M, Carman R J, Hanna D C et al. Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1, 2-13(1995).

    [127] Zhou P, Li R X, Xiao H et al. Exploring high power, extreme wavelength operating potential of rare-earth-doped silica fiber[J]. Proceedings of SPIE, 10339, 103391C(2017).

    [128] Palma-Vega G, Walbaum T, Heinzig M et al. Ring-up-doped fiber for the generation of more than 600 W single-mode narrow-band output at 1018 nm[J]. Optics Letters, 44, 2502-2505(2019).

    [129] Glick Y, Sintov Y, Zuitlin R et al. Single-mode 230 W output power 1018 nm fiber laser and ASE competition suppression[J]. Journal of the Optical Society of America B, 33, 1392-1398(2016).

    [130] Lafouti M, Latifi H, Fathi H et al. Experimental investigation of a high-power 1018 nm fiber laser using a 20/400 μm ytterbium-doped fiber[J]. Applied Optics, 58, 729-733(2019).

    [131] Kalyoncu S K, Yeniay A. High brightness 1018 nm monolithic fiber laser with power scaling to >500 W[J]. Applied Optics, 59, 4763-4767(2020).

    [132] Midilli Y, Efunbajo O B, Şimşek B et al. 1018 nm Yb-doped high-power fiber laser pumped by broadband pump sources around 915 nm with output power above 100 W[J]. Applied Optics, 56, 7225-7229(2017).

    [133] Chen X L, Wang J H, Zhao X et al. 307 W high-power 1018 nm monolithic tandem pump fiber source with effective thermal management[J]. Chinese Optics Letters, 15, 071407(2017).

    [134] Yan P, Wang X J, Li D et al. High-power 1018 nm ytterbium-doped fiber laser with output of 805 W[J]. Optics Letters, 42, 1193-1196(2017).

    [135] Yan P, Wang X J, Wang Z H et al. A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-6(2018).

    [136] Tian J D, Xiao Q R, Li D et al. Hybrid-structure 1018-nm monolithic single-mode fiber laser producing high power and high efficiency[J]. OSA Continuum, 2, 1138-1147(2019).

    [137] Xie Z X, Fang Q, Xu Y et al. Hundred-Watts-level monolithic narrow linewidth linearly-polarized fiber laser at 1018 nm[J]. Optical Engineering, 58, 106106(2019).

    [138] Xiao H, Zhou P, Wang X L et al. High power 1018 nm ytterbium doped fiber laser with an output power of 309 W[J]. Laser Physics Letters, 10, 065102(2013).

    [139] Li R X, Xiao H, Leng J Y et al. 2240 W high-brightness 1018 nm fiber laser for tandem pump application[J]. Laser Physics Letters, 14, 125102(2017).

    [140] Xiao H, Leng J, Zhang H et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J]. Applied Optics, 54, 8166-8169(2015).

    [141] Platonov N, Shkurikhin O, Fomin V et al. High-efficient kW-level single-mode ytterbium fiber lasers in all-fiber format with diffraction-limited beam at wavelengths in 1000-1030 nm spectral range[J]. Proceedings of SPIE, 11260, 1126003(2020).

    [142] Dong X, Li X, Xiao H et al. Efficient special S-band ytterbium fiber laser emitting at 1012 nm and its application in tandem pumping[J]. Laser Physics, 22, 953-956(2012).

    [143] Beier F, Otto H J, Jauregui C et al. 1009 nm continuous-wave ytterbium-doped fiber amplifier emitting 146 W[J]. Optics Letters, 39, 3725-3727(2014).

    [144] Röser F, Jauregui C, Limpert J et al. 94 W 980 nm high brightness Yb-doped fiber laser[J]. Optics Express, 16, 17310-17318(2008).

    [145] Li P X, Zhong G S, Liu Z et al. 980 nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling[J]. Optics & Laser Technology, 44, 2202-2205(2012).

    [146] Du H T, Liu A M, Cao J Q et al. The 976 nm band all-fiber laser developed by our company can achieve a power output of 100 W[J]. High Power Laser and Particle Beams, 31, 103211(2019).

    [147] Valero N, Feral C, Lhermite J et al. 39 W narrow spectral linewidth monolithic ytterbium-doped fiber MOPA system operating at 976 nm[J]. Optics Letters, 45, 1495-1498(2020).

    [148] Li W S, Matniyaz T, Gafsi S et al. 151 W monolithic diffraction-limited Yb-doped photonic bandgap fiber laser at ~978 nm[J]. Optics Express, 27, 24972-24977(2019).

    [149] Matniyaz T, Li W S, Gafsi S et al. A monolithic single-mode Yb three-level fiber laser at ~978 nm with a record power of ~150 W[J]. //CLEO: Applications and Technology 2019, May 5-10, 2019, San Jose, California, United States, JTh5A.7(2019).

    [150] Chen M N, Cao J Q, Huang Z H et al. Research progress on continuous-wave fiber lasers operating around 980 nm[J]. Chinese Journal of Lasers, 48, 0401013(2021).

    [151] Wu H S, Xiao H, Zhang H W et al. Preliminary theoretical analysis of high-power Yb-doped fiber amplifiers tandem-pumped by short-wavelength fiber lasers[J]. Proceedings of SPIE, 11781, 1178120(2021).

    [152] Dvoyrin V V, Medvedkov O I, Sorokina I T. YDFL operating in 1150-1200-nm spectral domain[J]. IEEE Journal of Quantum Electronics, 49, 419-425(2013).

    [153] Huang L, Zhang H W, Wang X L et al. Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 ℃[J]. IEEE Photonics Journal, 8, 1-7(2016).

    [154] Xiao H, Zhang H W, Xu J M et al. 120 W monolithic Yb-doped fiber oscillator at 1150 nm[J]. Journal of the Optical Society of America B, 34, A63-A69(2017).

    [155] Shirakawa A, Olausson C B, Maruyama H et al. High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology[J]. Optical Fiber Technology, 16, 449-457(2010).

    [156] Olausson C B, Shirakawa A, Chen M et al. 167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm[J]. Optics Express, 18, 16345-16352(2010).

    [157] Jacquemet M, Mugnier A, le Corre G et al. CW PM multiwatts Yb-doped fiber laser directly emitting at long wavelength[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 120-128(2009).

    [158] Yusim A, Barsalou J, Gapontsev D et al. 100 watt single-mode CW linearly polarized all-fiber format 1.56-μm laser with suppression of parasitic lasing effects[J]. Proceedings of SPIE, 5709, 69-77(2005).

    [159] Jeong Y, Yoo S, Codemard C A et al. Erbium∶ytterbium codoped large-core fiber laser with 297-W continuous-wave output power[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 573-579(2007).

    [160] Kotov L V, Likhachev M E, Bubnov M M et al. 75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm[J]. Optics Letters, 38, 2230-2232(2013).

    [161] Kotov L V, Likhachev M E, Bubnov M M et al. Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W[J]. Proceedings of SPIE, 8961, 89610X(2014).

    [162] Supradeepa V R, Nicholson J W, Feder K. Continuous wave Erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480 nm Raman fiber laser[C]. //CLEO: Science and Innovations 2012, May 6-11, 2012, San Jose, California, United States, CM2N.8(2012).

    [163] Lin H Q, Feng Y J, Feng Y T et al. 656 W Er-doped, Yb-free large-core fiber laser[J]. Optics Letters, 43, 3080-3083(2018).

    [164] Matniyaz T, Kong F T, Kalichevsky-Dong M T et al. 302 W single-mode power from an Er/Yb fiber MOPA: publisher’s note[J]. Optics Letters, 45, 3021(2020).

    [165] Yu W L, Yan P, Xiao Q R et al. Power scalability of a continuous-wave high-power Er-Yb co-doped fiber amplifier pumped by Yb-doped fiber lasers[J]. Applied Optics, 60, 2046-2055(2021).

    [166] Yu W L, Xiao Q R, Wang L L et al. 2196 W large-mode-area Er∶Yb codoped fiber amplifier operating at 1600 nm pumped by 1018 nm fiber lasers[J]. Optics Letters, 46, 2192-2195(2021).

    [167] Dan W, Han Q, Jia Q et al. Numerical comparison of pumping methods for high-power Er/Yb-codoped fiber lasers[J]. Applied Optics, 60, 2560-2566(2021).

    [168] Moulton P F, Rines G A, Slobodtchikov E V et al. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 85-92(2009).

    [169] Walbaum T, Heinzig M, Schreiber T et al. Monolithic thulium fiber laser with 567 W output power at 1970 nm[J]. Optics Letters, 41, 2632-2635(2016).

    [170] Yin K, Zhu R Z, Zhang B et al. 300 W-level, wavelength-widely-tunable, all-fiber integrated thulium-doped fiber laser[J]. Optics Express, 24, 11085-11090(2016).

    [171] Jin X X, Wang X, Zhou P et al. Powerful 2 μm silica fiber sources: a review of recent progress and prospects[J]. Journal of Electronic Science and Technology, 13, 315-327(2015).

    [172] Gaida C, Gebhardt M, Heuermann T et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power[J]. Optics Letters, 43, 5853-5856(2018).

    [173] Gaida C, Gebhardt M, Heuermann T et al. Ultrafast Tm-doped fiber amplifier with 1 kW average output power[C]. //The European Conference on Lasers and Electro-Optics 2019, June 23-27, 2019, Munich, Germany, cj_10_4(2019).

    [174] Gaida C, Gebhardt M, Heuermann T et al. Observation of transverse-mode instabilities in a thulium-doped fiber amplifier[J]. Proceedings of SPIE, 10897, 1089702(2019).

    [175] Tao R M, Zhou P, Xiao H et al. Theoretical study of high power mode instabilities in 2 μm thulium-doped fiber amplifiers[C]. //16th International Conference “Laser Optics 2014” ICLO, June 30-July 4, 2014, ST. Petersburg, Russia. [S.l.: s.n.](2014).

    [176] Smith A V, Smith J J. Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm[J]. Optics Express, 24, 975-992(2016).

    [177] Sincore A, Bradford J D, Cook J et al. High average power thulium-doped silica fiber lasers: review of systems and concepts[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-8(2018).

    [178] Chen S, Jung Y, Alam S U et al. Ultra-short wavelength operation of a thulium doped fiber laser in the 1620-1660 nm wavelength band[C]. //2018 Optical Fiber Communications Conference and Exposition (OFC), March 11-15, 2018, San Diego, CA, USA., 1-3(2018).

    [179] Li Z, Jung Y, Daniel J M O et al. Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers[J]. Optics Letters, 41, 2197-2200(2016).

    [180] Daniel J M O, Simakov N, Tokurakawa M et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band[J]. Optics Express, 23, 18269-18276(2015).

    [181] Feng Y. Raman fiber lasers[M](2017).

    [182] Supradeepa V R, Feng Y, Nicholson J W. Raman fiber lasers[J]. Journal of Optics, 19, 023001(2017).

    [183] Zhang H W, Zhou P, Xiao H et al. Toward high-power nonlinear fiber amplifier[J]. High Power Laser Science and Engineering, 6, e51(2018).

    [184] Zhang H W, Xiao H, Zhou P et al. 119-W monolithic single-mode 1173-nm Raman fiber laser[J]. IEEE Photonics Journal, 5, 1501706(2013).

    [185] Song J X, Wu H S, Ye J et al. High power linearly polarized Raman fiber laser with stable temporal output[J]. Photonic Sensors, 9, 43-48(2019).

    [186] Kablukov S I, Dontsova E I, Zlobina E A et al. An LD-pumped Raman fiber laser operating below 1 μm[J]. Laser Physics Letters, 10, 085103(2013).

    [187] Glick Y, Fromzel V, Zhang J et al. High-efficiency, 154 W CW, diode-pumped Raman fiber laser with brightness enhancement[J]. Applied Optics, 56, B97-B102(2017).

    [188] Zlobina E A, Kablukov S I, Wolf A A et al. Generating high-quality beam in a multimode LD-pumped all-fiber Raman laser[J]. Optics Express, 25, 12581-12587(2017).

    [189] Glick Y, Shamir Y, Wolf A A et al. Highly efficient all-fiber continuous-wave Raman graded-index fiber laser pumped by a fiber laser[J]. Optics Letters, 43, 1027-1030(2018).

    [190] Shamir Y, Glick Y, Aviel M et al. 250 W clad pumped Raman all-fiber laser with brightness enhancement[J]. Optics Letters, 43, 711-714(2018).

    [191] Glick Y, Shamir Y, Aviel M et al. 1.2 kW clad pumped Raman all-passive-fiber laser with brightness enhancement[J]. Optics Letters, 43, 4755-4758(2018).

    [192] Chen Y, Xiao H, Xu J et al. Laser diode-pumped dual-cavity high-power fiber laser emitting at 1150 nm employing hybrid gain[J]. Applied Optics, 55, 3824-3828(2016).

    [193] Wang J M, Li C, Yan D P. High power composite cavity fiber laser oscillator at 1120 nm[J]. Optics Communications, 405, 318-322(2017).

    [194] Zhang H W, Xiao H, Zhou P et al. 322 W single-mode Yb-doped all-fiber laser operated at 1120 nm[J]. Applied Physics Express, 7, 052701(2014).

    [195] Supradeepa V R, Nicholson J W. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers[J]. Optics Letters, 38, 2538-2541(2013).

    [196] Chen Y Z, Yao T F, Xiao H et al. 3 kW passive-gain-enabled metalized Raman fiber amplifier with brightness enhancement[J]. Journal of Lightwave Technology, 39, 1785-1790(2021).

    [197] Chen Y Z, Yao T F, Xiao H et al. High-power cladding pumped Raman fiber amplifier with a record beam quality[J]. Optics Letters, 45, 2367-2370(2020).

    [198] Chen Y Z, Yao T F, Xiao H et al. Greater than 2 kW all-passive fiber Raman amplifier with good beam quality[J]. High Power Laser Science and Engineering, 8, e33(2020).

    [199] Zhang L, Liu C, Jiang H W et al. Kilowatt ytterbium-Raman fiber laser[J]. Optics Express, 22, 18483-18489(2014).

    [200] Ma P F, Zhang H W, Huang L et al. Kilowatt-level near-diffraction-limited and linear-polarized Ytterbium-Raman hybrid nonlinear amplifier based on polarization selection loss mechanism[J]. Optics Express, 23, 26499-26508(2015).

    [201] Zhang H W, Tao R M, Zhou P et al. 1.5-kW Yb-Raman combined nonlinear fiber amplifier at 1120 nm[J]. IEEE Photonics Technology Letters, 27, 628-630(2015).

    [202] Xiao Q, Yan P, Li D et al. Bidirectional pumped high power Raman fiber laser[J]. Optics Express, 24, 6758-6768(2016).

    [203] Ma P F, Miao Y, Liu W et al. Kilowatt-level ytterbium-Raman fiber amplifier with a narrow-linewidth and near-diffraction-limited beam quality[J]. Optics Letters, 45, 1974-1977(2020).

    [204] Liu W, Ma P F, Zhou P et al. Effects of four-wave-mixing in high-power Raman fiber amplifiers[J]. Optics Express, 28, 593-606(2020).

    [205] Liu W, Miao Y, Ma P F et al. Theoretical study of narrow-linewidth hybrid rare-earth-Raman fiber amplifiers[J]. Optics Express, 27, 14523-14535(2019).

    [206] Distler V, Möller F, Strecker M et al. Transverse mode instability in a passive fiber induced by stimulated Raman scattering[J]. Optics Express, 28, 22819-22828(2020).

    [207] Naderi S, Dajani I, Grosek J et al. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers[J]. Optics Express, 24, 16550-16565(2016).

    [208] Wang Z H, Zhang B, Liu J et al. Recent developments in mid-infrared fiber lasers: status and challenges[J]. Optics & Laser Technology, 132, 106497(2020).

    [209] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 6, 423-431(2012).

    [210] Zhou P, Wang X, Ma Y et al. Review on recent progress on mid-infrared fiber lasers[J]. Laser Physics, 22, 1744-1751(2012).

    [211] Jain R, Zhu X S. Advances in materials and fibers for high power Mid-infrared fiber lasers[C]. //2008 2nd National Workshop on Advanced Optoelectronic Materials and Devices, December 22-24, 2008, Varanasi, India., 307-316(2008).

    [212] Zhu X S, Jain R. 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser[J]. Optics Letters, 32, 26-28(2006).

    [213] Tokita S, Hirokane M, Murakami M et al. Stable 10 W Er: ZBLAN fiber laser operating at 271-288 μm[J]. Optics Letters, 35, 3943-3945(2010).

    [214] Faucher D, Bernier M, Androz G et al. 20 W passively cooled single-mode all-fiber laser at 28 μm[J]. Optics Letters, 36, 1104-1106(2011).

    [215] Tokita S, Murakami M, Shimizu S et al. Liquid-cooled 24 W mid-infrared Er∶ZBLAN fiber laser[J]. Optics Letters, 34, 3062-3064(2009).

    [216] Fortin V, Bernier M, Bah S T et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 40, 2882-2885(2015).

    [217] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [218] Goya K, Uehara H, Konishi D et al. Stable 35-W Er∶ZBLAN fiber laser with CaF2 end caps[J]. Applied Physics Express, 12, 102007(2019).

    [219] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [220] Aydın Y O, Fortin V, Maes F et al. Long-term operation of high-power 3 μm fiber lasers[C]. //Laser Congress 2019 (ASSL, LAC, LS&C), September 29-October 3, 2019, Vienna, AW4A.7(2019).

    [221] Guo C Y, Dong F L, Shen P S et al. 20 W all-fiberized mid-infrared fiber laser at 2.8 μm[J]. Chinese Journal of Lasers, 48, 1416001(2021).

    [222] Gapontsev V, Avdokhin A, Kadwani P et al. SM green fiber laser operating in CW and QCW regimes and producing over 550 W of average output power[J]. Proceedings of SPIE, 8964, 896407(2014).

    [223] Wang H J, Zou J H, Dong C C et al. High-efficiency, yellow-light Dy 3+-doped fiber laser with wavelength tuning from 568.7 to 581.9 nm[J]. Optics Letters, 44, 4423-4426(2019).

    [224] Kifle E, Starecki F, Loiko P et al. Watt-level visible laser in double-clad Pr 3+-doped fluoride fiber pumped by a GaN diode[J]. Optics Letters, 46, 74-77(2021).

    [225] Fujimoto Y, Nakahara M, Binun P et al. 2 W single-mode visible laser oscillation in Pr-doped double-clad structured waterproof fluoro-aluminate glass fiber[C]. //The European Conference on Lasers and Electro-Optics 2019, June 23-27, 2019, Munich, Germany, cj_p_34(2019).

    [226] Lord M P, Maes F, Fortin V et al. Watt-level visible laser emission in a double-clad praseodymium-doped fluoride fiber[C]. //Advanced Solid State Lasers 2020, October 13-16, 2020, Washington, D.C., United States, ATh5A.6(2020).

    [227] Zou J H, Li T R, Dou Y B et al. Direct generation of watt-level yellow Dy 3+-doped fiber laser[J]. Photonics Research, 9, 446-451(2021).

    [228] Fang Q, Xu Y, Fu S J et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm[J]. Optics Letters, 41, 1829-1832(2016).

    [229] Wang Y F, Wu J M, Zhao Q L et al. Single-frequency DBR Nd-doped fiber laser at 1120 nm with a narrow linewidth and low threshold[J]. Optics Letters, 45, 2263-2266(2020).

    [230] Mo S P, Huang X, Xu S H et al. 600-Hz linewidth short-linear-cavity fiber laser[J]. Optics Letters, 39, 5818-5820(2014).

    [231] Zhu X S, Zong J, Miller A et al. Single-frequency Ho 3+-doped ZBLAN fiber laser at 1200 nm[J]. Optics Letters, 37, 4185-4187(2012).

    [232] Yang C S, Cen X, Xu S H et al. Research progress of single-frequency fiber laser[J]. Acta Optica Sinica, 41, 0114002(2021).

    [233] Brignon A. Coherent laser beam combining[M](2013).

    [234] Beier F, Hupel C, Nold J et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier[J]. Optics Express, 24, 6011-6020(2016).

    [235] Ma P F, Tao R M, Su R T et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 24, 4187-4195(2016).

    [236] Wang Y S, Wang J, Chang Z et al. Output of 3.08 kW narrow linewidth linearly polarized all-fiber laser based on a simple MOPA structure[J]. High Power Laser and Particle Beams, 32, 27-29(2020).

    [237] Shen H, Lou Q, Quan Z et al. Narrow-linewidth all-fiber amplifier with up to 3.01 kW output power based on commercial 20/400 μm active fiber and counterpumped configuration[J]. Applied Optics, 58, 3053-3058(2019).

    [238] Wang P, Sahu J K, Clarkson W A. Power scaling of ytterbium-doped fiber superfluorescent sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 580-587(2007).

    [239] Xu J M, Zhou P, Liu W et al. Exploration in performance scaling and new application avenues of superfluorescent fiber source[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-10(2018).

    [240] Zhang B, Jin A J, Ma P F et al. High-power near-infrared linearly-polarized supercontinuum generation in a polarization-maintaining Yb-doped fiber amplifier[J]. Optics Express, 23, 28683-28690(2015).

    [241] Hu X H, Zhang W, Yang Z et al. High average power, strictly all-fiber supercontinuum source with good beam quality[J]. Optics Letters, 36, 2659-2661(2011).

    [242] Song R, Hou J, Chen S P et al. High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier[J]. Optics Letters, 37, 1529-1531(2012).

    [243] Dawson J W, Messerly M J, Beach R J et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 16, 13240-13266(2008).

    [244] Zhu J J, Zhou P, Ma Y X et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 19, 18645-18654(2011).

    [245] Zervas M N. Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability[J]. Proceedings of SPIE, 10512, 1051205(2018).

    [246] Otto H J, Jauregui C, Limpert J et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[J]. Proceedings of SPIE, 9728, 97280E(2016).

    [247] Ke W W, Wang X J, Bao X F et al. Thermally induced mode distortion and its limit to power scaling of fiber lasers[J]. Optics Express, 21, 14272-14281(2013).

    [248] Agrawal G P. Nonlinear fiber optics[M](2013).

    [249] Zhu J J, Zhou P, Wang X L et al. Analysis of maximum extractable power of single-frequency Yb 3+-doped phosphate fiber sources[J]. IEEE Journal of Quantum Electronics, 48, 480-484(2012).

    [250] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).

    [251] Jauregui C, Eidam T, Otto H J et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 20, 12912-12925(2012).

    [252] Zervas M N. Transverse mode instability analysis in fibre amplifiers[J]. Proceedings of SPIE, 10083, 100830M(2017).

    [253] Zhou P. Fundamentals of high-average-power fiber laser technology: mode[J]. High Power Laser and Particle Beams, 30, 060201(2018).

    [254] Lai W C, Ma P F, Liu W et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber[J]. Optics Express, 28, 20908-20919(2020).

    [255] Huang Z M, Shu Q, Chu Q H et al. 5 kW all-fiberied narrow linewidth single mode fiber amplifier[J]. Chinese Journal of Lasers, 48, 0616001(2021).

    [256] Ma P F, Xiao H, Liu W et al. All-fiberized and narrow-linewidth 5 kW power-level fiber amplifier based on bidirectional pumping configuration[J]. High Power Laser Science and Engineering, 1-20(2021).

    [257] Xu J M, Ye J, Xiao H et al. In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality[J]. High Power Laser Science and Engineering, 6, e46(2018).

    [258] Song R, Hou J, Chen S P et al. Recent developments in high power near-infrared supercontinuum generation based on photonic crystal fiber[J]. Chinese Physics B, 21, 094211(2012).

    [259] Li Y, Dong K, Li F et al. 300 W high power supercontinuum generation of complete visible spectrum by long tapered photonic crystal fiber[J]. High Power Laser and Particle Beams, 33, 021002(2021).

    [260] Beier F, Strecker M, Nold J et al. 6.8 kW peak power quasi-continuous wave tandem-pumped ytterbium amplifier at 1071 nm[J]. Proceedings of SPIE, 9344, 93441H(2015).

    [261] Avdokhin A, Gapontsev V, Kadwani P et al. High average power quasi-CW single-mode green and UV fiber lasers[J]. Proceedings of SPIE, 9347, 934704(2015).

    [263] Otto H J, Stutzki F, Modsching N et al. 2 kW average power from a pulsed Yb-doped rod-type fiber amplifier[J]. Optics Letters, 39, 6446-6449(2014).

    [265] Eidam T, Hanf S, Seise E et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 35, 94-96(2010).

    [266] Zhao Z, Sheehy B, Minty M. Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier[J]. Optics Express, 25, 8138-8143(2017).

    [267] Tünnermann A, Schreiber T, Limpert J. Fiber lasers and amplifiers: an ultrafast performance evolution[J]. Applied Optics, 49, F71-F78(2010).

    [268] Liu Y, Li W X, Luo D P et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express, 24, 10939-10945(2016).

    [269] Zhao J, Li W X, Wang C et al. Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation[J]. Optics Express, 22, 32214-32219(2014).

    [270] Chen S P, Chen H W, Hou J et al. 100 W all fiber picosecond MOPA laser[J]. Optics Express, 17, 24008-24012(2009).

    [271] Elahi P, Yılmaz S, Akçaalan Ö et al. Doping management for high-power fiber lasers: 100 W, few-picosecond pulse generation from an all-fiber-integrated amplifier[J]. Optics Letters, 37, 3042-3044(2012).

    [272] Teh P S, Lewis R J, Alam S U et al. 200 W diffraction limited, single-polarization, all-fiber picosecond MOPA[J]. Optics Express, 21, 25883-25889(2013).

    [273] Chan H Y, Alam S U, Xu L et al. Compact, high-pulse-energy, high-power, picosecond master oscillator power amplifier[J]. Optics Express, 22, 21938-21943(2014).

    [274] Ma P F, Tao R M, Huang L et al. 608 W average power picosecond all fiber polarization-maintained amplifier with narrow-band and near-diffraction-limited beam quality[J]. Journal of Optics, 17, 075501(2015).

    [275] Liu J, Liu C, Shi H X et al. High-power linearly-polarized picosecond thulium-doped all-fiber master-oscillator power-amplifier[J]. Optics Express, 24, 15005-15011(2016).

    [276] Yao W C, Shao Z H, Shen C F et al. Gain-switched laser diode seeded TDFA with 409 W picosecond pulses and 142 W spectrally flat supercontinuum output[J]. Optics Express, 27, 1276-1282(2019).

    [277] Wan P, Yang L M, Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Optics Express, 21, 29854-29859(2013).

    [278] Yu H L, Wang X L, Zhang H W et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 μm[J]. Journal of Lightwave Technology, 34, 4271-4277(2016).

    [279] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 567-577(2005).

    [280] Liu Z J, Ma P F, Su R T et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect(Invited)[J]. Journal of the Optical Society of America B, 34, A7-A14(2016).

    [281] Goodno G D, Komine H, McNaught S J et al. Coherent combination of high-power, zigzag slab lasers[J]. Optics Letters, 31, 1247-1249(2006).

    [282] Ma P F, Zhou P, Ma Y X et al. Coherent polarization beam combining of four fiber amplifiers in 100 ns pulsed-regime[J]. Optics & Laser Technology, 47, 336-340(2013).

    [283] Ma P F, Tao R M, Wang X L et al. Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime[J]. Optics Express, 22, 4123-4130(2014).

    [284] Su R T, Zhou P, Zhang P F et al. Review on the progress in coherent beam combining of ultra-short fiber lasers(Invited)[J]. Infrared and Laser Engineering, 47, 0103001(2018).

    [285] Wang J, Zhang Y, Wang J et al. Recent progress of coherent combining technology in femtosecond fiber lasers[J]. Acta Physica Sinica, 70, 034206(2021).

    [286] Klenke A, Breitkopf S, Kienel M et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 38, 2283-2285(2013).

    [287] Kienel M, Müller M, Klenke A et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 41, 3343-3346(2016).

    [288] Mueller M, Klenke A, Stark H et al. 1.8-kW 16-channel ultrafast fiber laser system[J]. Proceedings of SPIE, 10512, 1051208(2018).

    [289] Mueller M, Klenke A, Steinkopff A et al. 3.5 kW coherently combined ultrafast fiber laser[J]. Proceedings of SPIE, 10897, 1089719(2019).

    [290] Stark H, Buldt J, Müller M et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification[J]. Optics Letters, 44, 5529-5532(2019).

    [291] Müeller M, Aleshire C, Klenke A et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 45, 3083-3086(2020).

    [292] Stark H, Buldt J, Müller M et al. 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system[J]. Optics Letters, 46, 969-972(2021).

    [293] Tsubakimoto K, Yoshida H, Miyanaga N. 600 W green and 300 W UV light generated from an eight-beam, sub-nanosecond fiber laser system[J]. Optics Letters, 42, 3255-3258(2017).

    [294] Feng Y, Jiang H W, Zhang L. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 44, 0201005(2017).

    [295] Zhou P, Huang L, Xu J M et al. High power linearly polarized fiber laser: generation, manipulation and application[J]. Science China Technological Sciences, 60, 1784-1800(2017).

    [296] Lai W C, Ma P F, Xiao H et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 32, 7-28(2020).

    [297] Hu M L, Cai Y. Research progress on mid-infrared ultrafast fiber laser[J]. Chinese Journal of Lasers, 47, 0500009(2020).

    [298] Hou J, Chen S P, Chen Z L et al. Recent developments and key technology analysis of high power supercontinuum source[J]. Laser & Optoelectronics Progress, 50, 080010(2013).

    [299] Jiang M, Ma P F, Su R T et al. Research progress and prospect of spectral beam combining(Invited)[J]. Infrared and Laser Engineering, 49, 20201053(2020).

    [300] Zhou P, Su R T, Ma Y X et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 48, 0401003(2021).

    [301] Zhou P, Huang L J, Leng J Y et al. High-power double-cladding fiber lasers: a 30-year overview[J]. Scientia Sinica (Technologica), 50, 123-135(2020).

    [302] Zhou P. Researcher of National Defense University of science and technology, the development history of popular science fiber laser[EB/OL]. (2020-05-27)[2021-04-01]. http://www.oeshow.cn/informationdetail/11448

    [303] Michalska M, Swiderski J, Mamajek M. Arbitrary pulse shaping in Er-doped fiber amplifiers: possibilities and limitations[J]. Optics & Laser Technology, 60, 8-13(2014).

    [304] Malinowski A, Vu K T, Chen K K et al. High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping[J]. Optics Express, 17, 20927-20937(2009).

    [305] Shi H X, Tan F Z, Cao Y et al. High-power diode-seeded thulium-doped fiber MOPA incorporating active pulse shaping[J]. Applied Physics B, 122, 1-8(2016).

    [306] Schimpf D N, Ruchert C, Nodop D et al. Compensation of pulse-distortion in saturated laser amplifiers[J]. Optics Express, 16, 17637-17646(2008).

    [307] Vu K T, Malinowski A, Richardson D J et al. Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system[J]. Optics Express, 14, 10996-11001(2006).

    [308] Zhou P, Su R T, Huang L J et al. Research progress and future perspective on ultrafast fiber laser enabled by computing technique(Invited)[J]. Infrared and Laser Engineering, 47, 0803001(2018).

    [309] Zhang L, Jiang H, Yang X et al. Ultra-wide wavelength tuning of a cascaded Raman random fiber laser[J]. Optics Letters, 41, 215-218(2016).

    [310] Zhang L, Jiang H, Yang X et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J]. Scientific Reports, 7, 42611(2017).

    [311] Ye J, Xu J M, Zhang Y et al. Spectrum-manipulable hundred-watt-level high-power superfluorescent fiber source[J]. Journal of Lightwave Technology, 37, 3113-3118(2019).

    [312] Ye J, Xu J M, Song J X et al. Pump scheme optimization of an incoherently pumped high-power random fiber laser[J]. Photonics Research, 7, 977-983(2019).

    [313] Vikram B S, Choudhury V, Prakash R et al. Continuously linewidth tunable, polarisation maintaining narrow linewidth fiber laser[J]. Proceedings of SPIE, 10897, 108971V(2019).

    [314] Xu H, Jiang M, Shi C et al. Spectral shaping for suppressing stimulated-Raman-scattering in a fiber laser[J]. Applied Optics, 56, 3538-3542(2017).

    [315] Sun B, Wang A T, Xu L X et al. Transverse mode switchable fiber laser through wavelength tuning[J]. Optics Letters, 38, 667-669(2013).

    [316] Huang Y P, Shi F, Wang T et al. High-order mode Yb-doped fiber lasers based on mode-selective couplers[J]. Optics Express, 26, 19171-19181(2018).

    [317] Cai Y, Wang Z Q, Wan H D et al. Mode and wavelength-switchable pulsed fiber laser with few-mode fiber grating[J]. IEEE Photonics Technology Letters, 31, 1155-1158(2019).

    [318] Wang T, Shi F, Huang Y P et al. High-order mode direct oscillation of few-mode fiber laser for high-quality cylindrical vector beams[J]. Optics Express, 26, 11850-11858(2018).

    [319] Li L, Wang M, Liu T et al. High-power, cladding-pumped all-fiber laser with selective transverse mode generation property[J]. Applied Optics, 56, 4967-4970(2017).

    [320] Song J X, Xu H Y, Wu H S et al. All-fiberized transverse mode-switching method based on temperature control[J]. Applied Optics, 58, 3696-3702(2019).

    [321] Song J X, Xu H Y, Wu H S et al. High power narrow linewidth LP11 mode fiber laser using mode-selective FBGs[J]. Laser Physics Letters, 15, 115101(2018).

    [322] Su R T, Yang B L, Xi X M et al. 500 W level MOPA laser with switchable output modes based on active control[J]. Optics Express, 25, 23275-23282(2017).

    [323] You Y, Bai G, Zou X X et al. A 1.4-kW mode-controllable fiber laser system[J]. Journal of Lightwave Technology, 39, 2536-2541(2021).

    [324] Vukovic N, Chan J S, Codemard C A et al. Multi-kilowatt fibre laser with azimuthal mode output beam for advanced material processing[J]. Proceedings of SPIE, 11266, 1126618(2020).

    [328] Snitzer E. Proposed fiber cavities for optical masers[J]. Journal of Applied Physics, 32, 36-39(1961).

    [329] Snitzer E. Optical maser action of Nd +3 in a barium crown glass[J]. Physical Review Letters, 7, 444-446(1961).

    Pu Zhou, Jinyong Leng, Hu Xiao, Pengfei Ma, Jiangming Xu, Wei Liu, Tianfu Yao, Hanwei Zhang, Liangjin Huang, Zhiyong Pan. High Average Power Fiber Lasers: Research Progress and Future Prospect[J]. Chinese Journal of Lasers, 2021, 48(20): 2000001
    Download Citation