[2] Wang L, Yuan L, Wu X, et al. Electrochromic response of pulsed laser deposition prepared WO3-TiO2 composite film[J].Rsc Advances,2014,4(88):47670-47676.
[3] Ke D, Liu H, Peng T, et al. Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles [J].Materials Letters,2008,62(3):447-450.
[4] Zanetti S M, Rocha K O, Rodrigues J A, et al. Soft-chemical synthesis, characterization and humidity sensing behavior of WO3/TiO2 nanopowders[J].Sensors and Actuators B: Chemical,2014,190:40-47.
[6] Zayim E O. Optical and electrochromic properties of sol-gel made anti-reflective WO3-TiO2 films[J].Solar Energy Materials and Solar Cells, 2005,87(1-4):695-703.
[7] Liu K I, Hsueh Y C, Su C Y, et al. Photoelectrochemical application of mesoporous TiO2/WO3 nanohoneycomb prepared by sol-gel method[J].International Journal of Hydrogen Energy,2013,39(19),7750-7755.
[8] Leghari S A, Sajjad S, Chen F, et al. WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst[J].Chemical Engineering Journal, 2011,166(3):906-915.
[9] Pal B, Vijayan B L, Krishnan S G, et al. Hydrothermal syntheses of tungsten doped TiO2 and TiO2/WO3 composite using metal oxide precursors for charge storage applications[J].Journal of Alloys and Compounds,2018,740:703-710.
[10] Liang Y, Guan Z C, Wang H P, et al. Enhanced photoelectrochemical anticorrosion performance of WO3/TiO2 nanotube composite films formed by anodization and electrodeposition[J].Electrochemistry Communications,2017,77:120-123.
[11] Smith Y R, Sarma B, Mohanty S K, et al. Formation of TiO2-WO3 nanotubular composite via single-step anodization and its application in photoelectrochemical hydrogen generation[J].Electrochemistry Communications,2012,19:131-134.
[12] Xin Y, Gao M,Wang Y, et al. Photoelectrocatalytic degradation of 4-Nonylphenol in water with WO3/TiO2 nanotube array photoelectrodes[J].Chemical Engineering Journal,2014,242:162-169.
[13] Gui Y, Blackwood D J. Eletrochromic enhancement of WO3-TiO2 composite films produced by eletrochemical anodization[J].Journal of The Electrochemical Society,2014,161(14):191-201
[14] Nazari M, GolestaniFard F, Bayati R, et al. Enhanced photocatalytic in anodized WO3-Loaded TiO2 nanotubes [J].Superlattices and Microstructures,2015,80:91-101.
[16] Vargas M, Lopez D M, Murphy N R, et al. Effect of W-Ti target composition on the surface chemistry and electronic structure of WO3-TiO2 films made by reactive sputtering[J].Applied Surface Science,2015,353:728-734.
[17] Ferroni M, Guidi V, Martinelli G, et al. Electron microscopy and rutherford backscattering study of nucleation and growth in nanosized W-Ti-O thin films[J].Journal of Applied Physics,2000,88(2):1097-1103.
[18] Dobromir M, Apetrei R P, Rebegea S, et al. Synthesis and characterization of RF sputtered WO3/TiO2 bilayers[J].Surface and Coatings Technology,2016,285:197-202.
[20] Charles C, Martin N, Devel M. Optical properties of nanostructured WO3 thin films by glancing angle deposition: comparison between experiment and simulation[J].Surface and Coatings Technology,2015,276:136-140.
[21] Charles C, Martin N, Devel M, et al. Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition[J].Thin Solid Films,2013,534:275-281.
[22] Horprathum M, Limwichean K, Wisitsoraat A, et al. NO2-sensing properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering[J].Sensors and Actuators B: Chemical,2013,176:685-691.
[23] Wang M H, Chen Y, Gao B W, et al. Electrochromic properties of nano-structured WO3 thin films deposited by glancing angle magnetron sputtering[J]. Advanced Electronic Materials,2019,5(5):1800713.
[26] Wen R T, Granqvist C G, Niklasson G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films[J].Nature materials,2015,14(10):996-1001.
[28] ReyesGil K R,Stephens Z D,Stavila V, et al. Composite WO3/TiO2 nanostructures for high electrochromic activity[J]. Acs Appl Mater Interfaces,2013,7(4):2202-2213.
[30] Huang B R, Lin T C, Liu Y M. WO3/TiO2 Core-shell nanostructure for high performance energy-saving smart windows[J].Solar Energy Materials and Solar Cells,2015,133:32-38.
[31] Cai G F, Zhou D, Xiong Q Q, et al. Efficient electrochromic materials based on TiO2/WO3 core/shell nanorod arrays[J].Solar Energy Materials and Solar Cells,2013,117:231-238.
[33] Yang J, Zhang X, Liu H, et al. Heterostructured TiO2/WO3 porous microspheres:preparation, characterization and photocatalytic properties[J].Catalysis Today,2013,201(1):195-202.
[35] Hunge Y M, Yadav A A, Mahadik M A, et al. Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2, photoelectrodes under sunlight Illumination[J].Optical Materials,2018,76:260-270.
[36] He J, Cai Q Z, Zhu D, et al. In-situ preparation of WO3/TiO2 composite film with increased photo quantum efficiency on titanium substrate[J].Current Applied Physics,2011,11(1):98-100.
[38] Carcel R A, Andronic L, Duta A. Photocatalytic activity and stability of TiO2 and WO3 thin films [J].Materials Characterization,2012,70:68-73.
[39] Soares L, Alves A. Photocatalytic properties of TiO2 and TiO2/WO3 films applied as semiconductors in heterogeneous photocatalysis[J].Materials Letter,2018,211:339-342.
[41] Lin W D, Lai D S, Chen M H, et al. Evaluate humidity sensing properties of novel TiO2-WO3 composite material[J].Materials Research Bulletin,2013,48(10):3822-3828.
[42] Kim H M, Kim D, Kim B. Photoinduced hydrophilicity of TiO2/WO3 double layer films[J].Surface and Coatings Technology,2015,271:18-21.