• Semiconductor Optoelectronics
  • Vol. 41, Issue 4, 542 (2020)
WANG Dengfeng1, YAO Xin1,2, JIAO Zhongke1, LIU Xuan1, and DONG Shuai2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2020.04.018 Cite this Article
    WANG Dengfeng, YAO Xin, JIAO Zhongke, LIU Xuan, DONG Shuai. Twophoton Correlation Imaging Technique towards Longdistance Quantum Communications[J]. Semiconductor Optoelectronics, 2020, 41(4): 542 Copy Citation Text show less
    References

    [1] Shih Y. Quantum imaging[J]. IEEE J. Sel. Top. Quantum Electron., 2007, 13: 10161030.

    [2] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Inform. Process., 2012, 11(4): 949993.

    [3] Kwiat P G, Mattle K, Weinfurter H, et al. New highintensity source of polarizationentangled photon pairs[J]. Phys. Rev. Lett., 1995, 75(24): 43374341.

    [4] Brendel J, Gisin N, Tittel W, et al. Pulsed energytime entangled twinphoton source for quantum communication[J]. Phys. Rev. Lett., 1999, 82: 25942597.

    [5] Pittman T B, Shih Y, Strekalov D V, et al. Optical imaging by means of twophoton quantum entanglement[J]. Phys. Rev. A, 1995, 52(5): 34293442.

    [6] Abouraddy A F, Saleh B E A, Sergienko A V, et al. Role of entanglement in twophoton imaging[J]. Phys. Rev. Lett., 2001, 87(12): 123602.

    [7] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Phys. Rev. Lett., 2004, 93(9): 093602.

    [8] Bennink R S, Bentley S J, Boyd R W. “Twophoton” coincidence imaging with a classical source[J]. Phys. Rev. Lett., 2002, 89(11): 113601.

    [9] Brown R H, Twiss R Q. A test of a new type of stellar interferometer on sirius[J]. Nature, 1956, 178(4541): 10461048.

    [10] Zhai Y H, Chen X H, Zhang D, et al. Twophoton interference with true thermal light[J]. Phys. Rev. A, 2005, 72(4): 043805.

    [11] Ferri F, Magatti D, Gatti A, et al. Highresolution ghost image and ghost diffraction experiments with thermal light[J]. Phys. Rev. Lett., 2005, 94(18): 183602.

    [12] Ryczkowski P, Barbier M, Friberg A T, et al. Ghost imaging in the time domain[J]. Nat. Photon., 2016, 10: 167170.

    [13] Dong S, Zhang W, Huang Y D, et al. Longdistance temporal quantum ghost imaging over optical fibers[J]. Sci. Rep., 2016, 6: 26022.

    [14] Devaux F, Moreau P, Denis S, et al. Computational temporal ghost imaging[J]. Optica, 2016, 3: 698701.

    [15] Zhang A X, He Y H, Wu L A, et al. Tabletop Xray ghost imaging with ultralow radiation[J]. Optica, 2018, 5(4): 374377.

    [16] Pelliccia D, Rack A, Scheel M, et al. Experimental Xray ghost imaging[J]. Phys. Rev. Lett., 2016, 117(11): 113902.

    [17] Klein Y, Schori A, Dolbnya I P, et al. Xray computational ghost imaging with singlepixel detector[J]. Opt. Express, 2019, 27(3): 32843293.

    [18] Khakimov R I, Henson B M, Shin D K, et al. Ghost imaging with atoms[J]. Nature, 2016, 540(7631): 100103.

    [19] Li S, Cropp F, Kabra K, et al. Electron ghost imaging[J]. Phys. Rev. Lett., 2018, 121(11): 114801.

    [20] Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography[J]. Rev. Mod. Phys., 2002, 74(1): 145195.

    WANG Dengfeng, YAO Xin, JIAO Zhongke, LIU Xuan, DONG Shuai. Twophoton Correlation Imaging Technique towards Longdistance Quantum Communications[J]. Semiconductor Optoelectronics, 2020, 41(4): 542
    Download Citation