• Nano-Micro Letters
  • Vol. 16, Issue 1, 176 (2024)
Chuyang Liu1, Lu Xu1, Xueyu Xiang1, Yujing Zhang2、*, Li Zhou1, Bo Ouyang3、**, Fan Wu4、6, Dong-Hyun Kim5, and Guangbin Ji1、***
Author Affiliations
  • 1School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 Jiangsu, People’s Republic of China
  • 2School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu, People’s Republic of China
  • 3School of Physics, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu, People’s Republic of China
  • 4School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu, People’s Republic of China
  • 5School of Physics, Chungbuk National University, Cheongju 28644, South Korea
  • 6Department of Chemistry, School of Science, Tianjin University Tianjin 300072, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01395-4 Cite this Article
    Chuyang Liu, Lu Xu, Xueyu Xiang, Yujing Zhang, Li Zhou, Bo Ouyang, Fan Wu, Dong-Hyun Kim, Guangbin Ji. Achieving Ultra-Broad Microwave Absorption Bandwidth Around Millimeter-Wave Atmospheric Window Through an Intentional Manipulation on Multi-Magnetic Resonance Behavior[J]. Nano-Micro Letters, 2024, 16(1): 176 Copy Citation Text show less
    References

    [1] Z. Zhao, Y. Qing, L. Kong, H. Xu, X. Fan et al., Advancements in microwave absorption motivated by interdisciplinary research. Adv. Mater. 36, 2304182 (2024).

    [2] G. Giribaldi, L. Colombo, P. Simeoni, M. Rinaldi, Compact and wideband nanoacoustic pass-band filters for future 5G and 6G cellular radios. Nat. Commun. 15, 304 (2024).

    [3] J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy? Adv. Funct. Mater. 32, 2200123 (2022).

    [4] C. Xue, W. Wu, Y. Yang, J. Zhou, L. Ding et al., Carbon nanotube diodes operating at frequencies of over 50 GHz. Small 19, 2207628 (2023).

    [5] C. Liu, Y. Zhang, Y. Tang, Z. Wang, H. Tang et al., Excellent absorption properties of BaFe12-xNbxO19 controlled by multi-resonance permeability, enhanced permittivity, and the order of matching thickness. Phys. Chem. Chem. Phys. 19, 21893–21903 (2017).

    [6] M. Yuan, B. Zhao, C. Yang, K. Pei, L. Wang et al., Remarkable magnetic exchange coupling via constructing Bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 32, 2203161 (2022).

    [7] F. He, W. Zhao, L. Cao, Z. Liu, L. Sun et al., The ordered mesoporous Barium ferrite compounded with nitrogen-doped reduced graphene oxide for microwave absorption materials. Small 19, e2205644 (2023).

    [8] C. Liu, Y. Zhang, Y. Tang, Z. Wang, N. Ma et al., The tunable magnetic and microwave absorption properties of the Nb5+–Ni2+ Co-doped M-type Barium ferrite. J. Mater. Chem. C 5, 3461–3472 (2017).

    [9] J. Li, Y. Hong, S. He, W. Li, H. Bai et al., A neutron diffraction investigation of high valent doped Barium ferrite with wideband tunable microwave absorption. J. Adv. Ceram. 11, 263–272 (2022).

    [10] C. Liu, Y. Hao, S. Zheng, G. Fang, J. Li et al., Abating dopant competition between dual high-valence ions in single-phased Barium ferrite towards ultra-broad microwave absorption. J. Mater. Chem. C 11, 15500–15511 (2023).

    [11] B.Y. Wang, T.C. Wang, Y.T. Hsu, M. Osada, K. Lee et al., Effects of rare-earth magnetism on the superconducting upper critical field in infinite-layer nickelates. Sci. Adv. 9, eadf6655 (2023).

    [12] C. Liu, Q. Xu, Y. Tang, Z. Wang, R. Ma et al., Zr4+ doping-controlled permittivity and permeability of BaFe12-xZrxO19 and the extraordinary EM absorption power in the millimeter wavelength frequency range. J. Mater. Chem. C 4, 9532–9543 (2016).

    [13] H. Shang, J. Wang, Q. Liu, Synthesis and characterization of nanocrystalline BaFe12O19 obtained by using glucose as a fuel. Mater. Sci. Eng. A 456, 130–132 (2007).

    [14] S.P. Keerthana, R. Yuvakkumar, G. Ravi, A.G. Al-Sehemi, D. Velauthapillai, Synthesis of pure and lanthanum-doped Barium ferrite nanoparticles for efficient removal of toxic pollutants. J. Hazard. Mater. 424, 127604 (2022).

    [15] X. Wang, B. Wang, S. Wei, Y. Wang, Y. Liang et al., Tunable magnetic and microwave absorption properties of Barium ferrite particles by site-selective Co2+-Zr4+ Co-doping. J. Alloys Compd. 960, 170777 (2023).

    [16] A.M. Youssef, S.M. Yakout, S.M. Mousa, High relative permittivity and excellent dye photo-elimination: pure and (Zr4+, Y3+, Sb5+) multi-doped anatase TiO2 structure. Opt. Mater. 135, 113261 (2023).

    [17] J. He, Y. Liu, Y. Huang, H. Li, Y. Zou et al., Fe2+-induced in situ intercalation and cation exsolution of Co80Fe20(OH)(OCH3) with rich vacancies for boosting oxygen evolution reaction. Adv. Funct. Mater. 31, 2009245 (2021).

    [18] C. Liu, Y. Zhang, Y. Zhang, G. Fang, X. Zhao et al., Multiple nature resonance behavior of BaFexTiO19 controlled by Fe/Ba ratio and its regulation on microwave absorption properties. J. Alloys Compd. 773, 730–738 (2019).

    [19] B. Xiao, C. Liu, D. Pan, R. Hu, T. Sun et al., A solid solution-based millimeter-wave absorber exhibiting highly efficient absorbing capability and ultrabroad bandwidth simultaneously via a multi-elemental co-doping strategy. J. Mater. Chem. C 10, 1381–1393 (2022).

    [20] R. Jasrotia, V. Pratap Singh, R. Kumar, K. Singha, M. Chandel et al., Analysis of Cd2+ and In3+ ions doping on microstructure, optical, magnetic and m o¨ ssbauer spectral properties of sol-gel synthesized BaM hexagonal ferrite based nanomaterials. Results Phys. 12, 1933–1941 (2019).

    [21] Z. Durmus, H. Sozeri, M.S. Toprak, A. Baykal, The effect of condensation on the morphology and magnetic properties of modified Barium hexaferrite (BaFe12O19). Nano-Micro Lett. 3, 108–114 (2011).

    [22] C. Liu, Z. Chen, X. Xiang, G. Fang, Z. Wang et al., Determining the actual composition of Nb5+–Ni2+ codoped Barium ferrites to controllably regulate the microwave absorbing properties. J. Phys. Chem. C 126, 21800–21809 (2022).

    [23] W. Yuan, L. Cheng, T. Xia, Y. Chen, Q. Long et al., Effect of Fe doping on the lattice structure, microscopic morphology and microwave absorption properties of LaCo1-xFexO3. J. Alloys Compd. 926, 166839 (2022).

    [24] W.-Y. Zhao, P. Wei, H.-B. Cheng, X.-F. Tang, Q.-J. Zhang, FTIR spectra, lattice shrinkage, and magnetic properties of CoTi-substituted M-type Barium hexaferrite nanoparticles. J. Am. Ceram. Soc. 90, 2095–2103 (2007).

    [25] Z. Zhang, J. Li, J. Qian, Z. Li, L. Jia et al., Significant change of metal cations in geometric sites by magnetic-field annealing FeCo2O4 for enhanced oxygen catalytic activity. Small 18, e2104248 (2022).

    [26] S. Lu, Y. Liu, Q. Yin, J. Chen, J. Wu et al., Investigation of crystal structure, Raman spectroscopy and magnetic properties of La-Zn substituted oriented M-type hexagonal Barium ferrites. Mater. Res. Bull. 172, 112640 (2024).

    [27] Y. Shao, F. Huang, X. Xu, S. Yan, C. Yang et al., Multi-susceptible single-phase BaAlxFe12–xO19 ceramics with both improved magnetic and ferroelectric properties. Appl. Phys. Lett. 114, 242902 (2019).

    [28] M.I. Ariëns, L.G.A. van de Water, A.I. Dugulan, E. Brück, E.J.M. Hensen, Copper promotion of chromium-doped iron oxide water-gas shift catalysts under industrially relevant conditions. J. Catal. 405, 391–403 (2022).

    [29] Z.H. Hua, S.Z. Li, Z.D. Han, D.H. Wang, M. Lu et al., The effect of La–Zn substitution on the microstructure and magnetic properties of Barium ferrites. Mater. Sci. Eng. A 448, 326–329 (2007).

    [30] C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15, 13 (2022).

    [31] P. Wu, X. Kong, Y. Feng, W. Ding, Z. Sheng et al., Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv. Funct. Mater. 34, 2311983 (2024).

    [32] Q. Jin, Q. Zhang, H. Bai, A. Huon, T. Charlton et al., Emergent magnetic states and tunable exchange bias at 3d nitride heterointerfaces. Adv. Mater. 35, e2208221 (2023).

    [33] S. Kumar, M. Kumar Manglam, S. Supriya, H. Kumar Satyapal, R. Kumar Singh et al., Lattice strain mediated dielectric and magnetic properties in La doped Barium hexaferrite. J. Magn. Magn. Mater. 473, 312–319 (2019).

    [34] H. Koizumi, J.-I. Inoue, H. Yanagihara, Magnetic anisotropy and orbital angular momentum in the orbital ferrimagnet CoMnO3. Phys. Rev. B 100, 224425 (2019).

    [35] M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like coni/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Fucnt. Mater. 10, 2316691 (2024).

    [36] E.A. Gorbachev, L.A. Trusov, A.E. Sleptsova, E.S. Kozlyakova, L.N. Alyabyeva et al., Hexaferrite materials displaying ultra-high coercivity and sub-terahertz ferromagnetic resonance frequencies. Mater. Today 32, 13–18 (2020).

    [37] Y. Ren, H. Yan, X. Li, S. Lv, H. Zhu et al., Enhanced saturation magnetization and microwave absorption magnetic properties of Mn-Co-Zr substituted BaM ferrite. J. Alloys Compd. 693, 1257–1260 (2017).

    [38] F. Wang, Y. Liu, R. Feng, X. Wang, X. Han et al., A “win–win” strategy to modify Co/C foam with carbon microspheres for enhanced dielectric loss and microwave absorption characteristics. Small 19, 2303597 (2023).

    [39] A. Pacewicz, J. Krupka, J.H. Mikkelsen, A. Lynnyk, B. Salski, Accurate measurements of the ferromagnetic resonance linewidth of single crystal BaM hexaferrite spheres employing magnetic plasmon resonance theory. J. Magn. Magn. Mater. 580, 170902 (2023).

    [40] X. Guan, S. Tan, L. Wang, Y. Zhao, G. Ji, Electronic modulation strategy for mass-producible ultrastrong multifunctional biomass-based fiber aerogel devices: interfacial bridging. ACS Nano 17, 20525–20536 (2023).

    [41] M. Salari, S.M. Taromsari, S. Habibpour, H.H. Shi, M. Hamidinejad et al., The intersection of computational design and wearable-optimized electrospun structural nanohybrids for electromagnetic absorption. Adv. Funct. Mater. 34, 2309528 (2024).

    [42] H. Luo, B. Ma, F. Chen, S. Zhang, Y. Xiong et al., Bimetallic oxalate rod-derived NiFe/Fe3O4@C composites with tunable magneto-dielectric properties for high-performance microwave absorption. J. Phys. Chem. C 125, 24540–24549 (2021).

    [43] F. Chen, H. Luo, Y. Cheng, R. Guo, W. Yang et al., Nickel/Nickel phosphide composite embedded in N-doped carbon with tunable electromagnetic properties toward high-efficiency microwave absorption. Compos. Part A Appl. Sci. Manuf. 140, 106141 (2021).

    [44] Y. Zhao, Z. Lin, L. Huang, Z. Meng, H. Yu et al., Simultaneous optimization of conduction and polarization losses in CNT@NiCo compounds for superior electromagnetic wave absorption. J. Mater. Sci. Technol. 166, 34–46 (2023).

    [45] F. Long, Y. Xu, X. Li, L. Ren, J. Shi et al., Comparative study of recursive least squares with variable forgetting factor applied in AC loss measurement. Phys. Scr. 99, 015523 (2024).

    [46] Y. Zou, J. Lin, W. Zhou, M. Yu, J. Deng et al., Coexistence of high magnetic and dielectric properties in Ni-Zr Co-doped Barium hexaferrites. J. Alloys Compd. 907, 164516 (2022).

    [47] M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15, 176 (2023).

    [48] J. Hong, A. Bhardwaj, Y. Namgung, H. Bae, S.-J. Song, Evaluation of the effects of nanocatalyst infiltration on the SOFC performance and electrode reaction kinetics using the transmission line model. J. Mater. Chem. A 8, 23473–23487 (2020).

    [49] X. Chen, S. Guo, S. Tan, J. Ma, T. Xu et al., An environmentally friendly chitosan-derived VO2/carbon aerogel for radar infrared compatible stealth. Carbon 213, 118313 (2023).

    [50] X. Sun, Y. Li, Y. Huang, Y. Cheng, S. Wang et al., Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials. Adv. Funct. Mater. 32, 2107508 (2022).

    [51] F. Chen, S. Zhang, B. Ma, Y. Xiong, H. Luo et al., Bimetallic CoFe-MOF@Ti3C2Tx MXene derived composites for broadband microwave absorption. Chem. Eng. J. 431, 134007 (2022).

    [52] H. Luo, B. Ma, F. Chen, S. Zhang, X. Wang et al., Construction of hollow core-shelled nitrogen-doped carbon-coated yttrium aluminum garnet composites toward efficient microwave absorption. J. Colloid Interface Sci. 622, 181–191 (2022).

    [53] B. Ma, F. Chen, Y. Cheng, X. Wang, S. Yan et al., Ti3C2Tx MXene@NiFe layered double hydroxide derived multiple interfacial composites with efficient microwave absorption. J. Alloys Compd. 936, 168162 (2023).

    [54] G. Fang, T. He, X. Hu, X. Yang, S. Zheng et al., Bionic octopus structure Inspired Stress-Driven reconfigurable microwave absorption and multifunctional compatibility in infrared stealth and De-icing. Chem. Eng. J. 467, 143266 (2023).

    [55] G. Fang, C. Liu, X. Wei, Q. Cai, C. Chen et al., Determining the preferable polarization loss for magnetoelectric microwave absorbers by strategy of controllably regulating defects. Chem. Eng. J. 463, 142440 (2023).

    [56] X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024).

    [57] J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. (2024).

    Chuyang Liu, Lu Xu, Xueyu Xiang, Yujing Zhang, Li Zhou, Bo Ouyang, Fan Wu, Dong-Hyun Kim, Guangbin Ji. Achieving Ultra-Broad Microwave Absorption Bandwidth Around Millimeter-Wave Atmospheric Window Through an Intentional Manipulation on Multi-Magnetic Resonance Behavior[J]. Nano-Micro Letters, 2024, 16(1): 176
    Download Citation