• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 23, Issue 2, 116 (2025)
ZHANG Juan1, CHEN Yu2, MU Ning3,4, ZHOU Meng2,*, and ZHENG Jingmin3
Author Affiliations
  • 1Department of Medical Psychology, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
  • 2Department of Neurosurgery, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
  • 3Department of Medical Affairs, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
  • 3Department of Neurosurgery, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
  • 4Chongqing University, Chongqing 400044, China
  • show less
    DOI: 10.11805/tkyda2024548 Cite this Article
    ZHANG Juan, CHEN Yu, MU Ning, ZHOU Meng, ZHENG Jingmin. Research on the identification of different brain functional regions based on terahertz metamaterials[J]. Journal of Terahertz Science and Electronic Information Technology , 2025, 23(2): 116 Copy Citation Text show less
    References

    [1] WEIN S, MALLONI W M, TOM A M, et al. A graph neural network framework for causal inference in brain networks[J]. Scientific Reports, 2021, 11(1): 8061. doi: 10.1038/s41598-021-87411-8.

    [2] EPSTEIN R A, BAKER C I. Scene perception in the human brain[J]. Annual Review of Vision Science, 2019(5): 373-397. doi: 10.1146/annurev-vision-091718-014809.

    [3] WEI Pengxu, BAO Ruixue, LYU Zeping, et al. Weak but critical links between primary somatosensory centers and motor cortex during movement[J]. Frontiers in Human Neuroscience, 2018(21): 1. doi: 10.3389/fnhum.2018.00001.

    [4] GOGOLLA N. The insular cortex[J]. Current Biology: CB, 2017, 27(12): R580-R586. doi: 10.1016/j.cub.2017.05.010.

    [5] GLASSER M F, COALSON T S, ROBINSON E C, et al. A multi-modal parcellation of human cerebral cortex[J]. Nature, 2016, 536(7615): 171-178. doi: 10.1038/nature18933.

    [7] DU Peng, CHEN Hongyi, LYU Kun, et al. A survey of radiomics in precision diagnosis and treatment of adult gliomas[J]. Journal of Clinical Medicine, 2022, 11(13): 3802. doi: 10.3390/jcm11133802.

    [8] MACPHERSON T, CHURCHLAND A, SEJNOWSKI T, et al. Natural and artificial intelligence: a brief introduction to the interplay between AI and neuroscience research[J]. Neural Networks: the Official Journal of the International Neural Network Society, 2021(144): 603-613. doi: 10.1016/j.neunet.2021.09.018.

    [9] HALLETT M, DELROSSO L M, ELBLE R, et al. Evaluation of movement and brain activity[J]. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 2021, 132(10): 2608-2638. doi: 10.1016/j.clinph.2021.04.023.

    [10] ELLIS D G, WHITE M L, HAYASAKA S, et al. Accuracy analysis of fMRI and MEG activations determined by intraoperative mapping[J]. Neurosurgical Focus, 2020, 48(2): E13. doi: 10.3171/2019.11.Focus19784.

    [11] WANG Tao, YAN Shaozhen, LU Jie. The effects of noninvasive brain stimulation on cognitive function in patients with mild cognitive impairment and Alzheimer's disease using resting-state functional magnetic resonance imaging: a systematic review and meta-analysis[J]. CNS Neuroscience &Therapeutics, 2023, 29(11): 3160-3172. doi: 10.1111/cns.14314.

    [12] LI Rihui YANG Dalin, FANG Fang, et al. Concurrent fNIRS and EEG for brain function investigation: a systematic, methodology-focused review[J]. Sensors (Basel, Switzerland), 2022, 22(15): 5865. doi: 10.3390/s22155865.

    [13] ENGEMANN D A, KOZYNETS O, SABBAGH D, et al. Combining magnetoencephalography with magnetic resonance imaging enhances learning of surrogate-biomarkers[J]. ELife Journal, 2020(9): e54055. doi: 10.7554/eLife.54055.

    [14] MIVALT F, KREMEN V, SLADKY V, et al. Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans[J]. Journal of Neural Engineering, 2022, 19(1): 016019. doi: 10.1088/1741-2552/ac4bfd.

    [15] POULIN M, GIANNACOPOULOS S, SKOROBOGATIY M. Surface wave enhanced sensing in the terahertz spectral range: modalities, materials, and perspectives[J]. Sensors (Basel, Switzerland), 2019, 19(24): 5505. doi: 10.3390/s19245505.

    [16] LAJEVARDIPOUR A, VILAGOSH Z, APPADOO D, et al. Spectroscopy of excised skin patches exposed to THz and far-IR radiation[J]. Biomedical Optics Express, 2021, 12(7): 4610-4626. doi: 10.1364/boe.424267.

    [17] ZHU Yiming. Editorial: terahertz technologies for biosensing and biomedical analysis[J]. Frontiers in Bioengineering and Biotechnology, 2023(11): 1268427. doi: 10.3389/fbioe.2023.1268427.

    [18] PU Z, WU Y, ZHU Z, et al. A new horizon for neuroscience: terahertz biotechnology in brain research[J]. Neural Regeneration Research, 2025: 309-325. doi: 10.4103/nrr.Nrr-d-23-00872.

    [19] BANERJEE S, AMITH C S, KUMAR D, et al. Ultra-thin subwavelength film sensing through the excitation of dark modes in THz metasurfaces[J]. Optics Communications, 2019(453): 124366. doi: 10.1016/j.optcom.2019.124366.

    [20] LEE S, BAEK S, KIM T T, et al. Metamaterials for enhanced optical responses and their application to active control of terahertz waves[J]. Advanced Materials (Deerfield Beach, Fla.), 2020, 32(35): e2000250. doi: 10.1002/adma.202000250.

    [21] LEE S H, SHIN S, ROH Y, et al. Label-free brain tissue imaging using large-area terahertz metamaterials[J]. Biosensors & Bioelectronics, 2020(170): 112663. doi: 10.1016/j.bios.2020.112663.

    [22] WU Limin, XU Degang, WANG Yuye, et al. Horizontal-scanning attenuated total reflection terahertz imaging for biological tissues[J]. Neurophotonics, 2020, 7(2): 025005. doi: 10.1117/1.NPh.7.2.025005.

    [23] WANG Xinke, ZHANG Yan. Potential terahertz therapeutic strategy for the prevention or mitigation of Alzheimer's disease pathology[J]. Light: Science & Applications, 2023, 12(1): 254. doi: 10.1038/s41377-023-01289-x.

    [24] WU Limin, WANG Yuye, LIAO Bin, et al. Temperature dependent terahertz spectroscopy and imaging of orthotopic brain gliomas in mouse models[J]. Biomedical Optics Express, 2022, 13(1): 93-104. doi: 10.1364/boe.445597.

    [25] MU Ning, ZHANG Chiben, YANG Chuanyan, et al. Terahertz meta-biosensor for subtype detection and chemotherapy monitoring of glioma cells[J]. Materials & Design, 2024(246): 113294.

    [26] FISCHL B, SERENO M I. Microstructural parcellation of the human brain[J]. NeuroImage, 2018(182): 219-231. doi: 10.1016/j.neuroimage.2018.01.036.

    [27] NEUDORFER C, ELIAS G J B, JAKOBS M, et al. Mapping autonomic, mood and cognitive effects of hypothalamic region deep brain stimulation[J]. Brain: a Journal of Neurology, 2021, 144(9): 2837-2851. doi: 10.1093/brain/awab170.

    [28] ZHAO Zhiying, YAO Shuxia, LI Keshuang, et al. Real-time functional connectivity-informed neurofeedback of amygdala-frontal pathways reduces anxiety[J]. Psychotherapy and Psychosomatics, 2019, 88(1): 5-15. doi: 10.1159/000496057.

    [30] ZHANG Jin, MU Ning, LIU Longhai, et al. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency[J]. Biosensors & Bioelectronics, 2021(185): 113241. doi: 10.1016/j.bios.2021.113241.

    [32] CALLAWAY E M, DONG H W, ECKER J R, et al. A multimodal cell census and Atlas of the mammalian primary motor cortex[J]. Nature, 2021(598): 86-102. doi: 10.1038/s41586-021-03950-0.

    [33] CHEN Xinyue, HUANG Yin, HUANG Liangfeng, et al. A brain cell atlas integrating single-cell transcriptomes across human brain regions[J]. Nature Medicine, 2024, 30(9): 2679-2691. doi: 10.1038/s41591-024-03150-z.

    ZHANG Juan, CHEN Yu, MU Ning, ZHOU Meng, ZHENG Jingmin. Research on the identification of different brain functional regions based on terahertz metamaterials[J]. Journal of Terahertz Science and Electronic Information Technology , 2025, 23(2): 116
    Download Citation