[1] Mahboob I, Veal T D, McConville C F. Low-energy nitrogen ion implantation of InSb[J]. J. Appl. Phys., 2004, 96(9): 4935-4938.
[2] Lee J J, Razeghi M. Novel Sb-based materials for uncooled infrared photodetector applications[J]. J. Cryst. Growth, 2000, 221: 444-449.
[3] Piotrowski J, Rogalski A. Uncooled long wavelength infrared photon detectors[J]. Infrared Phys. Technol., 2004, 46(1/2): 115-131.
[6] Lee G S, Thompson P E, Davis J L, et al. Characterization of molecular beam epitaxially grown InSb layers and diode structures[J]. Solid-State Electron., 1993, 36(3): 387-389.
[7] Wu J M, Lin Y H, Yang B-Z. Force-pad made from contact-electrification poly(ethylene oxide)/InSb field-effect transistor[J]. Nano Energy, 2016, 22: 468-474.
[8] Ke C T, Moehle C M, de Vries F K, et al. Ballistic superconductivity and tunable -junctions in InSb quantum wells[J]. Nature Commun., 2019, 10(1): 3764.
[9] Kallaher R, Heremans J J, Goel N, et al. Spin-orbit interaction determined by antilocalization in an InSb quantum well[J]. Phys. Rev. B, 2010, 81(7): 075303.
[10] Kim Y, Lee J, Noh Y, et al. Effect of two-step growth on the heteroepitaxial growth of InSb thin film on Si (001) substrate: A transmission electron microscopy study[J]. Appl. Phys. Lett., 2006, 89(3): 031919.
[11] Rao B V, Gruznev D, Tambo T, et al. Heteroepitaxial growth of high quality InSb films on Si(111) substrates using a two-step growth method[J]. Semicond. Sci. Technol., 2001, 16(4): 216.
[12] Hudait M K. Heterogeneously integrated Ⅲ-Ⅴ on silicon for future nanoelectronics[J]. ECS Trans., 2012, 45(3): 581.
[13] Liu W, Winesett J, Ma W, et al. Molecular beam epitaxy of InSb on Si substrates using fluoride buffer layers[J]. J. Appl. Phys., 1997, 81(4): 1708-1714.
[14] Mori M, Akae N, Uotani K, et al. Heteroepitaxial growth of InSb films on a Si(001) substrate via AlSb buffer layer[J]. Appl. Surf. Sci., 2003, 216(1): 569-574.
[15] Lehner C A, Tschirky T, Ihn T, et al. Limiting scattering processes in high-mobility InSb quantum wells grown on GaSb buffer systems[J]. Phys. Rev. Mater., 2018, 2(5): 054601.
[16] Jia B W, Tan K H, Loke W K, et al. Growth and characterization of InSb on (100) Si for mid-infrared application[J]. Appl. Surf. Sci., 2018, 440: 939-945.
[17] Shibahara K, Nishino S, Matsunami H. Antiphase-domain-free growth of cubic SiC on Si(100)[J]. Appl. Phys. Lett., 1987, 50(26): 1888-1890.
[18] Xin Y, Browning N, Rujirawat S, et al. Investigation of the evolution of single domain (111)B CdTe films by molecular beam epitaxy on miscut (001) Si substrate[J]. J. Appl. Phys., 1998, 84(8): 4292-4299.
[19] Huang X, Bai J, Dudley M, et al. Step-controlled strain relaxation in the vicinal surface epitaxy of nitrides[J]. Phys. Rev. Lett., 2005, 95(8): 086101.
[20] Li H, Wang Z, Kan X, et al. The van der Waals epitaxy of Bi2Se3 on the vicinal Si (111) surface: an approach for preparing high-quality thin films of a topological insulator[J]. New J. Phys., 2010, 12(10): 103038.
[21] Kim K-C, Kim S K, Kim J-S, et al. Domain engineering of epitaxial (001) Bi2Te3 thin films by miscut GaAs substrate[J]. Acta Materialia, 2020, 197: 309-315.
[22] Nagao T, Sadowski J, Saito M, et al. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si (111)-7×7[J]. Phys. Rev. Lett., 2004, 93(10): 105501.
[23] Xie M, Seutter S, Zhu W, et al. Anisotropic step-flow growth and island growth of GaN (0001) by molecular beam epitaxy[J]. Phys. Rev. Lett., 1999, 82(13): 2749.
[24] Beaulieu Y, Webb J, Brebner J. Photoconductivity of InSb/GaAs heterostructures at low temperature[J]. J. Appl. Phys., 1996, 79(3): 1772-1778.
[25] Sadofyev Y G, Ramamoorthy A, Bird J, et al. Large negative persistent photoconductivity in InAs/AlSb quantum wells[J]. Appl. Phys. Lett., 2005, 86(19): 192109.
[26] Raichev O, Vasko F. Absolute negative conductivity of electrons after ultrafast photoexcitation[J]. Phys. Rev. B, 2006, 73(7): 075204.