[2] RDEL J, JO W, SEIFERT K T P, et al. Perspective on the development of lead-free piezoceramics[J]. J Am Ceram Soc, 2009, 92(6): 1153-1177.
[3] PANDA P K. Review: environmental friendly lead-free piezoelectric materials[J]. J Mater Sci, 2009, 44(19): 5049-5062.
[4] SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013): 84-87.
[5] WANG X H, CHEN I W, DENG X Y, et al. New progress in development of ferroelectric and piezoelectric nanoceramics[J]. J Adv Ceram, 2015, 4(1): 1-21.
[6] SCOTT J F. Applications of modern ferroelectrics[J]. Science, 2007, 315(16): 954-959.
[8] WANG X, WU J, XIAO D, et al. Giant piezoelectricity in potassium-sodium niobate lead-free ceramics[J]. J Am Chem Soc, 2014, 136(7): 2905-2910.
[9] WU B, WU H, WU J, et al. Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence[J]. J Am Chem Soc, 2016, 138(47): 15459-15464.
[10] LI J F, WANG K, ZHU F Y, et al. (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges[J]. J Am Ceram Soc, 2013, 96(12): 3677-3696.
[11] CHENG X, WU J, LOU X, et al. Achieving both giant d33 and high TC in patassium-sodium niobate ternary system[J]. ACS Appl Mater Interfaces, 2014, 6(2): 750-756.
[12] XU K, LI J, LV X, et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics[J]. Adv Mater, 2016, 28(38): 8519-8523.
[13] MONTERO-TAVERA C, DURRUTHY-RODRíGUEZ M D, CORTéS-VEGA F D, et al. Study of the structural, ferroelectric, dielectric, and pyroelectric properties of the K0.5Na0.5NbO3 system doped with Li+, La3+, and Ti4+[J]. J Adv Ceram, 2020, 9(3): 329-338.
[14] LIU Y, XU D, YU Z, et al. A novel rotary piezoelectric motor using first bending hybrid transducers[J]. Appl Sci, 2015, 5(3): 472-484.
[15] MORITA T. Miniature piezoelectric motors[J]. Sens Actuator A Phys, 2003, 103(3): 291-300.
[16] CHU X, MA L, LI L. A disk-pivot structure micro piezoelectric actuator using vibration mode B11[J]. Ultrasonics, 2006, 44: 561-564.
[17] WANG H, ZHAO P, CHEN L, et al. Energy storage properties of 0.87BaTiO3-0.13Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3 multilayer ceramic capacitors with thin dielectric layers[J]. J Adv Ceram, 2020, 9(3): 292-302.
[18] SAKABE Y, MINAL K, QAKINO K. High-dielectric constant ceramics for base metal monolithic[J]. Jpn J Appl Phys, 1981, 20: 147-150.
[19] BURN I, MAHER G H. High resistivity BaTiO3 ceramics sintered in CO-CO2 atmospheres[J]. J Mater Sci, 1975, 10: 633-640.
[20] KAWADA S, KIMURA M, HIGUCHI Y, et al. (K,Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes[J]. Appl Phys Express, 2009, 2(11): 111401.
[21] LIU C, LIU P, KOBAYASHI K, et al. Base metal co-fired (Na,K)NbO3 structures with enhanced piezoelectric performance[J]. J Electroceram, 2014, 32(4): 301-306.
[22] WANG B, LIU F, ZHANG F, et al. Effects of the post-annealing reductive-atmosphere-sintered (K0.48Na0.52)NbO3 lead-free piezoceramics [J]. Ceram Int, 2020, 46(17): 27373-27380.
[23] LIN D, KWOK K W, CHAN H W L. Dielectric and piezoelectric properties of (K0.5Na0.5)NbO3-Ba(Zr0.05Ti0.95)O3 lead-free ceramics[J]. Appl Phys Lett, 2007, 91(14): 143513.
[25] SCHAAB S, SCHULZ M, FRITZE H, et al. Influence of reducing atmosphere on the defect chemistry of lead lanthanum zirconate titanate (8/65/35)[J]. Solid State Ionics, 2012, 228: 56-63.
[29] MALIC B, KORUZA J, HRESCAK J, et al. Sintering of lead-free piezoelectric sodium potassium niobate ceramics[J]. Materials, 2015, 8(12): 8117-8146.
[30] FISHER J G, ROUT D, MOON K S, et al. High-temperature X-ray diffraction and Raman spectroscopy study of (K0.5Na0.5)NbO3 ceramics sintered in oxidizing and reducing atmospheres[J]. Mater Chem Phys, 2010, 120(2-3): 263-271.
[33] LI P, ZHAI J, SHEN B, et al. Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics[J]. Adv Mater, 2018, 30(8): 1705171.
[34] RANDALL C A, KIM N, KUCERA J P, et al. Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics[J]. J Am Ceram Soc, 1998, 81(3): 677-688.
[35] JIANG X P, CHEN Y, LAM K H, et al. Effects of MnO doping on properties of 0.97K0.5Na0.5NbO3-0.03(Bi0.5K0.5)TiO3 piezoelectric ceramics[J]. J Alloys Compd, 2010, 506(1): 323-326.
[36] CAO W W, RANDALL C A. Grain size and domain size relations in bulk ceramic ferroelectric materials[J]. J Phys Chem Solids, 1996, 57(10): 1499-1505.
[37] ARLT G, PERTSEV N A. Force constant and effective mass of 90° domain walls in ferroelectric ceramics[J]. J Appl Phys, 1991, 70(4): 2283-2289.
[38] CHEN K, MA J, SHI C, et al. Enhanced temperature stability in high piezoelectric performance of (K, Na)NbO3-based lead-free ceramics trough co-doped antimony and tantalum[J]. J Alloys Compd, 2021, 852.