• Chinese Journal of Lasers
  • Vol. 50, Issue 10, 1001001 (2023)
Xuyuan Zhu1,2,3, Xiaobo La1,2,3, Jing Guo1,2,3, Zhenyu Li1,2,3..., Lingjuan Zhao1,2,3, Wei Wang1,2,3 and Song Liang1,2,3,*|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Semiconductor Material Science, Institute of Semiconductors, Chinese Academy of Sciences,Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,Beijing 100049, China
  • 3Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
  • show less
    DOI: 10.3788/CJL220827 Cite this Article Set citation alerts
    Xuyuan Zhu, Xiaobo La, Jing Guo, Zhenyu Li, Lingjuan Zhao, Wei Wang, Song Liang. 1.3‑μm High‐Speed Directly‑Modulated InGaAlAs/InP DFB Laser with Integrated DBR Feedback Region[J]. Chinese Journal of Lasers, 2023, 50(10): 1001001 Copy Citation Text show less
    References

    [1] Cisco U. Cisco annual Internet report (2018-2023) white paper[EB/OL]. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

    [2] Tucker R. High-speed modulation of semiconductor lasers[J]. Journal of Lightwave Technology, 3, 1180-1192(1985).

    [3] Chen L H, Yang G W, Liu Y X. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 47, 0500001(2020).

    [4] Yuan Q H, Jing H Q, Liu S P et al. Influence of guided wave mode on output characteristics of tapered diode laser[J]. Chinese Journal of Lasers, 48, 0901001(2021).

    [5] Ke X, Deng L W. Linewidth of mutually injection-locked semiconductor lasers in weak coupling regime[J]. Chinese Journal of Lasers, 49, 0301001(2022).

    [6] Yamazaki H, Yamada T, Sakamaki Y et al. Advanced optical modulators with hybrid configuration of silica-based PLC and LiNbO3 phase-shifter array for ultra-high-speed transport networks[C], 237-244(2008).

    [7] Doi Y, Yamada T. Recent progress on hybrid silica-PLCs/LiNbO3 modulator for advanced transmission formats[C], 564-565(2010).

    [8] Liu Y L, Zhang L C, La X B et al. Up to 50 Gb/s modulation of an EAM integrated widely tunable DBR laser[J]. Optics Express, 29, 4523-4529(2021).

    [9] Liu Y L, Tang Q, Zhang L C et al. Dual-wavelength DBR laser integrated with high-speed EAM for THz communications[J]. Optics Express, 28, 10542-10551(2020).

    [10] Deng Q F, Zhu H L, Xie X et al. Low chirp EMLs fabricated by combining SAG and double stack active layer techniques[J]. IEEE Photonics Journal, 10, 7902007(2018).

    [11] Zhou D B, Liang S, Zhao L J et al. High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers[J]. Optics Express, 25, 2341-2346(2017).

    [12] Zhou D B, Liang S, He Y M et al. Two 10 Gb/s directly modulated DBR lasers covering 20 nm wavelength range[J]. Optics Communications, 475, 126236(2020).

    [13] Tang Q, Liu Y L, Zhang L C et al. 25 Gb/s directly modulated widely tunable 1.3 μm dual wavelength DFB laser for THz communication[J]. IEEE Photonics Technology Letters, 32, 410-413(2020).

    [14] Kobayashi W, Tadokoro T, Ito T et al. High-speed operation at 50 Gb/s and 60-km SMF transmission with 1.3-μm InGaAlAs-based DML[C], 50-51(2012).

    [15] Bowers J, Hemenway B, Gnauck A et al. High-speed InGaAsP constricted-mesa lasers[J]. IEEE Journal of Quantum Electronics, 22, 833-844(1986).

    [16] Kobayashi W, Ito T, Yamanaka T et al. 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1500908(2013).

    [17] Nakajima T, Onga M, Sekino Y et al. 106-Gb/s PAM4 operation of directly modulated DFB lasers from 25 ℃ to 70 ℃ for transmission over 2-km SMF in the CWDM range[J]. Journal of Lightwave Technology, 40, 1815-1820(2022).

    [18] Liu G H, Zhao G Y, Zhang G et al. Directly modulated active distributed reflector distributed feedback lasers over wide temperature range operation (-40 ℃ to 85 ℃)[J]. Chinese Optics Letters, 18, 061401(2020).

    [19] Zhao G Y, Sun J Q, Xi Y P et al. Design and simulation of two-section DFB lasers with short active-section lengths[J]. Optics Express, 24, 10590-10598(2016).

    [20] Matsuda M, Uetake A, Simoyama T et al. 1.3-μm-wavelength AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-reflector laser arrays on semi-insulating InP substrate[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 241-247(2015).

    [21] Matsui Y, Pham T, Ling W A et al. 55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4[C](2016).

    [22] Morton P A, Tanbun-Ek T, Logan R A et al. Frequency response subtraction for simple measurement of intrinsic laser dynamic properties[J]. IEEE Photonics Technology Letters, 4, 133-136(1992).

    Xuyuan Zhu, Xiaobo La, Jing Guo, Zhenyu Li, Lingjuan Zhao, Wei Wang, Song Liang. 1.3‑μm High‐Speed Directly‑Modulated InGaAlAs/InP DFB Laser with Integrated DBR Feedback Region[J]. Chinese Journal of Lasers, 2023, 50(10): 1001001
    Download Citation