• High Power Laser and Particle Beams
  • Vol. 33, Issue 11, 111005 (2021)
Shaodong Hou1, Peiguang Yan1、*, and Shuangchen Ruan2
Author Affiliations
  • 1College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
  • show less
    DOI: 10.11884/HPLPB202133.210320 Cite this Article
    Shaodong Hou, Peiguang Yan, Shuangchen Ruan. Recent advances in mid-infrared ultrafast fiber laser technology[J]. High Power Laser and Particle Beams, 2021, 33(11): 111005 Copy Citation Text show less
    References

    [1] Popa D, Udrea F. Towards integrated mid-infrared gas sensors[J]. Sensors, 19, 2076(2019).

    [2] Jacques S L. Optical properties of biological tissues: a review[J]. Physics in Medicine & Biology, 58, R37-R61(2013).

    [3] Chang Zenghu, Corkum P B, Leone S R. Attosecond optics and technology: progress to date and future prospects [Invited][J]. Journal of the Optical Society of America B, 33, 1081-1097(2016).

    [4] Hudson D D, Antipov S, Li Lizhu, et al. Toward all-fiber supercontinuum spanning the mid-infrared[J]. Optica, 4, 1163-1166(2017).

    [5] Layne C B, Lowdermilk W H, Weber M J. Multiphonon relaxation of rare-earth ions in oxide glasses[J]. Physical Review B, 16, 10-20(1977).

    [6] Wang Zefeng, Yu Fei, Wadsworth W J, et al. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering[J]. Laser Physics Letters, 11, 105807(2014).

    [7] Ding Wei, Wang Yingying, Gao Shoufei, et al. Recent progress in low-loss hollow-core anti-resonant fibers and their applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 4400312(2020).

    [8] Cui Yulong, Huang Wei, Wang Zefeng, et al. 4.3 μm fiber laser in CO2-filled hollow-core silica fibers[J]. Optica, 6, 951-954(2019).

    [9] Désévédavy F, Strutynski C, Lemière A, et al. Review of tellurite glasses purification issues for mid-IR optical fiber applications[J]. Journal of the American Ceramic Society, 103, 4017-4034(2020).

    [10] Wang W C, Zhou B, Xu S H, et al. Recent advances in soft optical glass fiber and fiber lasers[J]. Progress in Materials Science, 101, 90-171(2019).

    [11] Sojka L, Tang Z, Furniss D, et al. Mid-infrared emission in Tb3+-doped selenide glass fiber[J]. Journal of the Optical Society of America B, 34, A70-A79(2017).

    [12] Maes F, Fortin V, Poulain S, et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 5, 761-764(2018).

    [13] He Huiyu, Jia Zhixu, Jia Shijie, et al. Ho3+/Pr3+ co-doped AlF3 based glass fibers for efficient ~2.9 μm lasers[J]. IEEE Photonics Technology Letters, 32, 1489-1492(2020).

    [14] Bao Qiaoliang, Zhang Han, Wang Yu, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 19, 3077-3083(2009).

    [15] Fermann M E, Andrejco M J, Silberberg Y, et al. Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber[J]. Optics Letters, 18, 894-896(1993).

    [16] Sabert H, Brinkmeyer E. Pulse generation in fiber lasers with frequency shifted feedback[J]. Journal of Lightwave Technology, 12, 1360-1368(1994).

    [17] Doran N J, Wood D. Nonlinear-optical loop mirror[J]. Optics Letters, 13, 56-58(1988).

    [18] Fermann M E, Haberl F, Hofer M, et al. Nonlinear amplifying loop mirror[J]. Optics Letters, 15, 752-754(1990).

    [19] Winful H G, Walton D T. Passive mode locking through nonlinear coupling in a dual-core fiber laser[J]. Optics Letters, 17, 1688-1690(1992).

    [20] Kutz J N, Sandstede B. Theory of passive harmonic mode-locking using waveguide arrays[J]. Optics Express, 16, 636-650(2008).

    [21] Proctor J L, Kutz J N. Passive mode-locking by use of waveguide arrays[J]. Optics Letters, 30, 2013-2015(2005).

    [22] Wang Leilei, Zeng Jianghui, Zhu Liang, et al. All-optical switching in long-period fiber grating with highly nonlinear chalcogenide fibers[J]. Applied Optics, 57, 10044-10050(2018).

    [23] Mamyshev P V. Alloptical data regeneration based on selfphase modulation effect[C]Proceedings of the 24th European Conference on Optical Communication. Madrid: IEEE, 1998: 475476.

    [24] Liu Wu, Liao Ruoyu, Zhao Jun, et al. Femtosecond Mamyshev oscillator with 10-MW-level peak power[J]. Optica, 6, 194-197(2019).

    [25] Chen Tao, Zhang Qiaoli, Zhang Yaping, et al. All-fiber passively mode-locked laser using nonlinear multimode interference of step-index multimode fiber[J]. Photonics Research, 6, 1033-1039(2018).

    [26] Zhao Kangjun, Li Yan, Xiao Xiaosheng, et al. Nonlinear multimode interference-based dual-color mode-locked fiber laser[J]. Optics Letters, 45, 1655-1658(2020).

    [27] Li Huanhuan, Hu Fangming, Tian Ying, et al. Continuously wavelength-tunable mode-locked Tm fiber laser using stretched SMF-GIMF-SMF structure as both saturable absorber and filter[J]. Optics Express, 27, 14437-14446(2019).

    [28] Hofer M, Fermann M E, Haberl F, et al. Mode locking with cross-phase and self-phase modulation[J]. Optics Letters, 16, 502-504(1991).

    [29] Duval S, Bernier M, Fortin V, et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2, 623-626(2015).

    [30] Hu T, Jackson S D, Hudson D D. Ultrafast pulses from a mid-infrared fiber laser[J]. Optics Letters, 40, 4226-4228(2015).

    [31] Wang Yuchen, Jobin F, Duval S, et al. Ultrafast Dy3+: fluoride fiber laser beyond 3 μm[J]. Optics Letters, 44, 395-398(2019).

    [32] Bawden N, Henderson-Sapir O, Jackson S D, et al. Ultrafast 3.5 µm fiber laser[J]. Optics Letters, 46, 1636-1639(2021).

    [33] Huang J, Pang M, Jiang F, et al. Sub-two-cycle octave-spanning mid-infrared fiber laser[J]. Optica, 7, 574-579(2020).

    [34] Woodward R I, Hudson D D, Fuerbach A, et al. Generation of 70-fs pulses at 2.86 μm from a mid-infrared fiber laser[J]. Optics Letters, 42, 4893-4896(2017).

    [35] Qin Zhipeng, Xie Guoqiang, Gu Hongan, et al. Mode-locked 2.8-µm fluoride fiber laser: from soliton to breathing pulse[J]. Advanced Photonics, 1, 065001(2019).

    [36] Huang J, Pang M, Jiang X, et al. Route from single-pulse to multi-pulse states in a mid-infrared soliton fiber laser[J]. Optics Express, 27, 26392-26404(2019).

    [37] Qin Zhipeng, Xie Guoqiang, Zhao Chujun, et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 41, 56-59(2016).

    [38] Zhu Gongwen, Zhu Xiushan, Wang Fengqiu, et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 28, 7-10(2016).

    [39] Zhu Chunhui, Wang Chunhui, Meng Yafei, et al. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions[J]. Nature Communications, 8, 14111(2017).

    [40] Guo Chunyu, Wei Jincheng, Yan Peiguang, et al. Mode-locked fiber laser at 2.8 μm using a chemical-vapor-deposited WSe2 saturable absorber mirror[J]. Applied Physics Express, 13, 012013(2020).

    [41] Tang Pinghua, Qin Zhipeng, Liu Jun, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 40, 4855-4858(2015).

    [42] Selden A C. Pulse transmission through a saturable absorber[J]. British Journal of Applied Physics, 18, 743-748(1967).

    [43] Matsuda Y, Tahir-Kheli J, Goddard III W A. Definitive band gaps for single-wall carbon nanotubes[J]. The Journal of Physical Chemistry Letters, 1, 2946-2950(2010).

    [44] Wang Shuxian, Yu Haohai, Zhang Huaijin, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 26, 3538-3544(2014).

    [45] Xu Yijun, Shi Zhe, Shi Xinyao, et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications[J]. Nanoscale, 11, 14491-14527(2019).

    [46] Qin Zhipeng, Xie Guoqiang, Ma Jingui, et al. 2.8 μm all-fiber Q-switched and mode-locked lasers with black phosphorus[J]. Photonics Research, 6, 1074-1078(2018).

    [47] Bianchi V, Carey T, Viti L, et al. Terahertz saturable absorbers from liquid phase exfoliation of graphite[J]. Nature Communications, 8, 15763(2017).

    [48] Luo Hongyu, Li Siqing, Li Xiaodong, et al. Unlocking the ultrafast potential of gold nanowires for mode-locking in the mid-infrared region[J]. Optics Letters, 46, 1562-1565(2021).

    [49] Li Jianfeng, Hudson D D, Liu Yong, et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Optics Letters, 37, 3747-3749(2012).

    [50] Hönninger C, Paschotta R, Morier-Genoud F, et al. Q-switching stability limits of continuous-wave passive mode locking[J]. Journal of the Optical Society of America B, 16, 46-56(1999).

    [51] Schibli T R, Thoen E R, Kärtner F X, et al. Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption[J]. Applied Physics B, 70, S41-S49(2000).

    [52] Wang Jintao, Wei Jincheng, Liu Wenjun, et al. 2.8 µm passively Q-switched Er: ZBLAN fiber laser with an Sb saturable absorber mirror[J]. Applied Optics, 59, 9165-9168(2020).

    [53] Wei Chen, Zhu Xiushan, Wang F, et al. Graphene Q-switched 2.78 µm Er3+-doped fluoride fiber laser[J]. Optics Letters, 38, 3233-3236(2013).

    [54] Li J F, Luo H Y, He Y L, et al. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser[J]. Laser Physics Letters, 11, 065102(2014).

    [55] Li Jianfeng, Luo Hongyu, Wang Lele, et al. 3-µm mid-infrared pulse generation using topological insulator as the saturable absorber[J]. Optics Letters, 40, 3659-3662(2015).

    [56] Qin Zhipeng, Xie Guoqiang, Zhang Han, et al. Black phosphorus as saturable absorber for the Q-switched Er: ZBLAN fiber laser at 2.8 µm[J]. Optics Express, 23, 24713-24718(2015).

    [57] Shen Yanlong, Wang Yishan, Luan Kunpeng, et al. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror[J]. Scientific Reports, 6, 26659(2016).

    [58] Tang Pinghua, Wu Man, Wang Qingkai, et al. 2.8-μm Pulsed Er3+: ZBLAN fiber laser modulated by topological insulator[J]. IEEE Photonics Technology Letters, 28, 1573-1576(2016).

    [59] Wei Chen, Luo Hongyu, Zhang Han, et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Physics Letters, 13, 105108(2016).

    [60] Zhang Tao, Feng Guoying, Zhang Hong, et al. 2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+: ZnSe film[J]. Laser Physics Letters, 13, 075102(2016).

    [61] Ning Shougui, Feng Guoying, Dai Shenyu, et al. Mid-infrared Fe2+: ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser[J]. AIP Advances, 8, 025121(2018).

    [62] Yang Lingling, Kang Zhe, Huang Bin, et al. Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser[J]. Optics Letters, 43, 5459-5462(2018).

    [63] Lü Yanjia, Wei Chen, Zhang Han, et al. Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber[J]. Photonics Research, 7, 14-18(2019).

    [64] Luo Hongyu, Li Jianfeng, Gao Ying, et al. Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08 µm using PbS nanoparticles[J]. Optics Letters, 44, 2322-2325(2019).

    [65] Wang Shiwei, Tang Yulong, Yang Jianlong, et al. MoS2Q-switched 2.8 μm Er: ZBLAN fiber laser[J]. Laser Physics, 29, 025101(2019).

    [66] Yi Jun, Du Lin, Li Jie, et al. Unleashing the potential of Ti2CTx MXene as a pulse modulator for mid-infrared fiber lasers[J]. 2D Materials, 6, 045038(2019).

    [67] Wei Chen, Chi Hao, Jiang Shurong, et al. Long-term stable platinum diselenide for nanosecond pulse generation in a 3-µm mid-infrared fiber laser[J]. Optics Express, 28, 33758-33766(2020).

    [68] Yang Jian, Hu Jiyi, Luo Hongyu, et al. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 µm[J]. Photonics Research, 8, 70-77(2020).

    [69] Chen Tenghui, Li Zhongjun, Zhang Chunxiang, et al. Indium selenide for Q-switched pulse generation in a mid-infrared fiber laser[J]. Journal of Materials Chemistry C, 9, 5893-5898(2021).

    [70] Sousa J M, Okhotnikov O G. Short pulse generation and control in Er-doped frequency-shifted-feedback fibre lasers[J]. Optics Communications, 183, 227-241(2000).

    [71] Hu T, Hudson D D, Jackson S D. FMmodelocked fiber laser operating at 2.9 μm[C]Proceedings of 2013 Conference on Lasers ElectroOptics Pacific Rim. Kyoto: IEEE, 2013: 12.

    [72] Woodward R I, Majewski M R, Jackson S D. Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 μm[J]. APL Photonics, 3, 116106(2018).

    [73] Majewski M R, Woodward R I, Jackson S D. Ultrafast mid-infrared fiber laser mode-locked using frequency-shifted feedback[J]. Optics Letters, 44, 1698-1701(2019).

    [74] Henderson-Sapir O, Bawden N, Majewski M R, et al. Mode-locked and tunable fiber laser at the 3.5 µm band using frequency-shifted feedback[J]. Optics Letters, 45, 224-227(2020).

    [75] Brabec T, Krausz F. Intense few-cycle laser fields: frontiers of nonlinear optics[J]. Reviews of Modern Physics, 72, 545-591(2000).

    [76] Chernikov S V, Dianov E M, Richardson D J, et al. Soliton pulse compression in dispersion-decreasing fiber[J]. Optics Letters, 18, 476-478(1993).

    [77] Travers J C, Stone J M, Rulkov A B, et al. Optical pulse compression in dispersion decreasing photonic crystal fiber[J]. Optics Express, 15, 13203-13211(2007).

    [78] Nisoli M, De Silvestri S, Svelto O. Generation of high energy 10 fs pulses by a new pulse compression technique[J]. Applied Physics Letters, 68, 2793-2795(1996).

    [79] Schulte J, Sartorius T, Weitenberg J, et al. Nonlinear pulse compression in a multi-pass cell[J]. Optics Letters, 41, 4511-4514(2016).

    [80] Pelusi M D, Liu Haifeng. Higher order soliton pulse compression in dispersion-decreasing optical fibers[J]. IEEE Journal of Quantum Electronics, 33, 1430-1439(1997).

    [81] Amorim A A, Tognetti M V, Oliveira P, et al. Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers[J]. Optics Letters, 34, 3851-3853(2009).

    [82] Kieu K, Renninger W H, Chong A, et al. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser[J]. Optics Letters, 34, 593-595(2009).

    [83] Dudley J M, Tayl J R. Supercontinuum generation in optical fibers[M]. Cambridge: Cambridge University Press, 2010.

    [84] Moon S, Kim D Y. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source[J]. Optics Express, 14, 11575-11584(2006).

    [85] Maria M, Gonzalo I B, Feuchter T, et al. Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography[J]. Optics Letters, 42, 4744-4747(2017).

    [86] Poudel C, Kaminski C F. Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications[J]. Journal of the Optical Society of America B, 36, A139-A153(2019).

    [87] Mayer A S, Klenner A, Johnson A R, et al. Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides[J]. Optics Express, 23, 15440-15451(2015).

    [88] Kaminski C F, Watt R S, Elder A D, et al. Supercontinuum radiation for applications in chemical sensing and microscopy[J]. Applied Physics B, 92, 367-378(2008).

    [89] Dai Shixun, Wang Yingying, Peng Xuefeng, et al. A review of mid-infrared supercontinuum generation in chalcogenide glass fibers[J]. Applied Sciences, 8, 707(2018).

    [90] Yu Yi, Gai Xin, Wang Ting, et al. Mid-infrared supercontinuum generation in chalcogenides[J]. Optical Materials Express, 3, 1075-1086(2013).

    [91] Belal M, Xu L, Horak P, et al. Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers[J]. Optics Letters, 40, 2237-2240(2015).

    [92] Thapa R, Rhonehouse D, Nguyen D, et al. IR supercontinuum generation in ultralow loss, dispersionzero shifted tellurite glass fiber with extended coverage beyond 4.5 μm[C]Proceedings of SPIE 8898, Technologies f Optical Countermeasures X; HighPower Lasers 2013: Technology Systems. Dresden: SPIE, 2013: 889808.

    [93] Wang Yingying, Dai Shixun. Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review[J]. PhotoniX, 2, 9(2021).

    [94] Marandi A, Rudy C W, Plotnichenko V G, et al. Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm[J]. Optics Express, 20, 24218-24225(2012).

    [95] Møller U, Yu Yi, Kubat I, et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber[J]. Optics Express, 23, 3282-3291(2015).

    [96] Corwin K L, Newbury N R, Dudley J M, et al. Fundamental noise limitations to supercontinuum generation in microstructure fiber[J]. Physical Review Letters, 90, 113904(2003).

    [97] Starecki F, Braud A, Abdellaoui N, et al. 7 to 8 µm emission from Sm3+ doped selenide fibers[J]. Optics Express, 26, 26462-26469(2018).

    [98] Crane R W, Sójka Ł, Furniss D, et al. Experimental photoluminescence and lifetimes at wavelengths including beyond 7 microns in Sm3+-doped selenide-chalcogenide glass fibers[J]. Optics Express, 28, 12373-12384(2020).

    [99] Bernier M, Faucher D, Vallée R, et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm[J]. Optics Letters, 32, 454-456(2007).

    [100] Bharathan G, Fernandez T T, Ams M, et al. Femtosecond laser direct-written fiber Bragg gratings with high reflectivity and low loss at wavelengths beyond 4 µm[J]. Optics Letters, 45, 4316-4319(2020).

    [101] Bharathan G, Fernandez T T, Ams M, et al. Optimized laser-written ZBLAN fiber Bragg gratings with high reflectivity and low loss[J]. Optics Letters, 44, 423-426(2019).

    [102] Aydin Y O, Maes F, Fortin V, et al. Endcapping of high-power 3 µm fiber lasers[J]. Optics Express, 27, 20659-20669(2019).

    [103] Magnan-Saucier S, Duval S, Matte-Breton C, et al. Fuseless side-pump combiner for efficient fluoride-based double-clad fiber pumping[J]. Optics Letters, 45, 5828-5831(2020).

    [104] Aydin Y O, Fortin V, Vallée R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [105] Liu Zhanwei, Ziegler Z M, Wright L G, et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 4, 649-654(2017).

    [106] Repgen P, Schuhbauer B, Hinkelmann M, et al. Mode-locked pulses from a Thulium-doped fiber Mamyshev oscillator[J]. Optics Express, 28, 13837-13844(2020).

    [107] Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers[J]. Science, 358, 94-97(2017).

    [108] Wright L G, Sidorenko P, Pourbeyram H, et al. Mechanisms of spatiotemporal mode-locking[J]. Nature Physics, 16, 565-570(2020).

    [109] Teğin U, Kakkava E, Rahmani B, et al. Spatiotemporal self-similar fiber laser[J]. Optica, 6, 1412-1415(2019).

    [110] Dai Chuansheng, Dong Zhipeng, Lin Jiaqiang, et al. Self-cleaning effect in an all-fiber spatiotemporal mode-locked laser based on graded-index multimode fiber[J]. Optik, 243, 167487(2021).

    [111] Blanco-Redondo A, de Sterke C M, Sipe J E, et al. Pure-quartic solitons[J]. Nature Communications, 7, 10427(2016).

    [112] Runge A F J, Hudson D D, Tam K K K, et al. The pure-quartic soliton laser[J]. Nature Photonics, 14, 492-497(2020).

    [113] Runge A F J, Hudson D D, Tam K K K, et al. Highder dispersion solitons in modelocked lasers[C]Proceedings of CLEO: QELS_Fundamental Science 2020. Washington: Optical Society of America, 2020: FTh1A. 1.

    Shaodong Hou, Peiguang Yan, Shuangchen Ruan. Recent advances in mid-infrared ultrafast fiber laser technology[J]. High Power Laser and Particle Beams, 2021, 33(11): 111005
    Download Citation