[1] D V STREKALOV, A V SERGIENKO, D N KLYSHKO et al. Observation of two-photon “ghost” interference and diffraction. Physical Review Letters, 74, 3600-3603(1995).
[2] T B PITTMAN, Y H SHIH, D V STREKALOV et al. Optical imaging by means of two-photon quantum entanglement. Physical Review A, 52, R3429-R3432(1995).
[3] R S BENNINK, S J BENTLEY, R W BOYD. “two-photon” coincidence imaging with a classical source. Physical Review Letters, 89, 113601(2002).
[4] G SCARCELLI, V BERARDI, Y SHIH. Quantum interference approach to two-photon correlation phenomena of chaotic light. Journal of Modern Optics, 53, 2279-2292(2006).
[5] J H SHAPIRO. Computational ghost imaging. Physical Review A, 78(2008).
[6] Z T LIU, S Y TAN, J R WU et al. Spectral camera based on ghost imaging via sparsity constraints. Scientific Reports, 6, 25718(2016).
[7] 孙鸣捷, 闫崧明, 王思源. 鬼成像和单像素成像技术中的重建算法[J]. 激光与光电子学进展, 2022, 59(2): 0200001. doi: 10.3788/LOP202259.0200001SUNM J, YANS M, WANGS Y. Reconstruction algorithm in ghost imaging and single pixel imaging technology[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0200001.(in Chinese). doi: 10.3788/LOP202259.0200001
[8] J A TROPP, A C GILBERT. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53, 4655-4666(2007).
[9] D NEEDELL, R VERSHYNIN. Greedy signal recovery and uncertainty principles, 6814, 139-150(2008).
[10] S S CHEN, D L DONOHO, M A SAUNDERS. Atomic decomposition by basis pursuit. SIAM Review, 43, 129-159(2001).
[11] A BECK, M TEBOULLE. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2, 183-202(2009).
[12] E J CANDES, T TAO. Near-optimal signal recovery from random projections: universal encoding strategies?. IEEE Transactions on Information Theory, 52, 5406-5425(2006).
[13] E J CANDES, J ROMBERG, T TAO. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52, 489-509(2006).
[14] J M BIOUCAS-DIAS, M A T FIGUEIREDO. Two-step algorithms for linear inverse problems with non-quadratic regularization(2007).
[15] S BECKER, J BOBIN, E J CANDÈS. NESTA: a fast and accurate first-order method for sparse recovery. SIAM Journal on Imaging Sciences, 4, 1-39(2011).
[16] X YUAN. Generalized alternating projection based total variation minimization for compressive sensing, 25, 2539-2543(2016).
[17] B WAHLBERG, S BOYD, M ANNERGREN et al. An ADMM algorithm for a class of total variation regularized estimation problems. IFAC Proceedings Volumes, 45, 83-88(2012).
[18] C B LI, W T YIN, H JIANG et al. An efficient augmented Lagrangian method with applications to total variation minimization. Computational Optimization and Applications, 56, 507-530(2013).
[19] P W WANG, C L WANG, C P YU et al. Color ghost imaging via sparsity constraint and non-local self-similarity. Chinese Optics Letters, 19(2021).
[20] O KATZ, Y BROMBERG, Y SILBERBERG. Compressive ghost imaging. Applied Physics Letters, 95, 131110(2009).
[21] Y BROMBERG, O KATZ, Y SILBERBERG. Ghost imaging with a single detector. Physical Review A, 79(2009).
[22] W W LI, Z S TONG, K XIAO et al. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints. Optica, 6, 1515-1523(2019).
[23] S LIU, Z LIU, C HU et al. Spectral ghost imaging camera with super-Rayleigh modulator. Optics Communications, 472, 126017(2020).
[24] C Y CHU, S Y LIU, Z T LIU et al. Spectral polarization camera based on ghost imaging via sparsity constraints. Applied Optics, 60, 4632-4638(2021).
[25] T WANG, M Y CHEN, H WU et al. Underwater compressive computational ghost imaging with wavelet enhancement. Applied Optics, 60, 6950-6957(2021).
[26] H HUANG, C ZHOU, T TIAN et al. High-quality compressive ghost imaging. Optics Communications, 412, 60-65(2018).
[27] G H WU, T H LI, J H LI et al. Ghost imaging under low-rank constraint. Optics Letters, 44, 4311-4314(2019).
[28] 吴建荣, 沈夏, 喻虹, 等. 基于相位调制的单次曝光压缩感知成像[J]. 光学学报, 2014, 34(10): 1011005. doi: 10.3788/aos201434.1011005WUJ R, SHENX, YUH, et al. Snapshot compressive imaging by phase modulation[J]. Acta Optica Sinica, 2014, 34(10): 1011005.(in Chinese). doi: 10.3788/aos201434.1011005
[29] 穆哲. 电容层析成像图像重建算法研究[D]. 兰州: 西北师范大学, 2021.MUZH. Research on Image Reconstruction Algorithm of Electrical Capacitance Tomography[D]. Lanzhou: Northwest Normal University, 2021. (in Chinese)
[30] E CANDÈS, B RECHT. Exact matrix completion via convex optimization. Communications of the ACM, 55, 111-119(2012).
[31] J F CAI, E J CANDÈS, Z W SHEN. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20, 1956-1982(2010).
[32] Y XIE, S H GU, Y LIU et al. Weighted schatten
[33] W M ZUO, D Y MENG, L ZHANG et al. A generalized iterated shrinkage algorithm for non-convex sparse coding, 1, 217-224(2013).