• Chinese Journal of Lasers
  • Vol. 49, Issue 15, 1507203 (2022)
Shuting Ke1, Minghui Chen1,*, Zexi Zheng2, Yuan Yuan1..., Teng Wang1, Longxi He1, Linjie Lü1 and Hao Sun1|Show fewer author(s)
Author Affiliations
  • 1Shanghai Engineering Research Center of Interventional Medical Device, the Ministry of Education of Medical Optical Engineering Center, School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/CJL202249.1507203 Cite this Article Set citation alerts
    Shuting Ke, Minghui Chen, Zexi Zheng, Yuan Yuan, Teng Wang, Longxi He, Linjie Lü, Hao Sun. Super-Resolution Reconstruction of Optical Coherence Tomography Retinal Images by Generating Adversarial Network[J]. Chinese Journal of Lasers, 2022, 49(15): 1507203 Copy Citation Text show less
    References

    [1] Khan A, Sohail A, Zahoora U et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 53, 5455-5516(2020).

    [2] Shah Z H, Müller M, Wang T C et al. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images[J]. Photonics Research, 9, B168-B181(2021).

    [3] Dong C, Loy C C, He K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    [4] Ma Y H, Chen X J, Zhu W F et al. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN[J]. Biomedical Optics Express, 9, 5129-5146(2018).

    [5] Qiu B, Huang Z Y, Liu X et al. Noise reduction in optical coherence tomography images using a deep neural network with perceptually-sensitive loss function[J]. Biomedical Optics Express, 11, 817-830(2020).

    [6] Huang Y Q, Lu Z X, Shao Z M et al. Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network[J]. Optics Express, 27, 12289-12307(2019).

    [7] Ledig C, Theis L, Huszár F et al. Photo-realistic single image super-resolution using a generative adversarial network[C], 105-114(2017).

    [8] Bing X Y, Zhang W W, Zheng L Y et al. Medical image super-resolution using improved generative adversarial networks[J]. IEEE Access, 7, 145030-145038(2019).

    [9] Das V, Dandapat S, Bora P K. A diagnostic information based framework for super-resolution and quality assessment of retinal OCT images[J]. Computerized Medical Imaging and Graphics, 94, 101997(2021).

    [10] Zhu J Y, Park T, Isola P et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C], 2242-2251(2017).

    [11] Yin H T, Deng H. Dual residual denoising network based on hybrid attention[J]. Laser & Optoelectronics Progress, 58, 1410002(2021).

    [12] Fu J, Li W S, Du J et al. A multiscale residual pyramid attention network for medical image fusion[J]. Biomedical Signal Processing and Control, 66, 102488(2021).

    [13] Wang Q L, Wu B G, Zhu P F et al. ECA-net: efficient channel attention for deep convolutional neural networks[C], 11531-11539(2020).

    [14] Cheng X, Li X, Yang J et al. SESR: single image super-resolution with recursive squeeze and excitation networks[C], 147-152(2018).

    [15] Radford A, Metz L, Chintala S[EB/OL]. Unsupervised representation learning with deep convolutional generative adversarial networks. https://arxiv.org/abs/1511.06434

    [16] Wang H, Wu C D, Chi J N et al. Image super-resolution using multi-granularity perception and pyramid attention networks[J]. Neurocomputing, 443, 247-261(2021).

    [17] Liu S, Qi L, Qin H F et al. Path aggregation network for instance segmentation[C], 8759-8768(2018).

    [18] Qing Y H, Liu W Y. Hyperspectral image classification based on multi-scale residual network with attention mechanism[J]. Remote Sensing, 13, 335(2021).

    [19] Zhang H, Zu K K, Lu J et al[EB/OL]. EPSANet: an efficient pyramid split attention block on convolutional neural network. https://arxiv.org/abs/2105.14447

    [20] Lin X, Huang Q, Huang W et al. Single image deraining via detail-guided efficient channel attention network[J]. Computers & Graphics, 97, 117-125(2021).

    [21] Cao Y, Xu J R, Lin S et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C], 1971-1980(2019).

    [22] Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 694-711(2016).

    [23] Simonyan K, Zisserman A[EB/OL]. Very deep convolutional networks for large-scale image recognition. https://arxiv.org/abs/1409.1556

    [24] Li J C, Wu L M, Wang S M et al. Super-resolution image reconstruction of textile based on SRGAN[C], 436-439(2019).

    [25] Bogunović H, Venhuizen F, Klimscha S et al. RETOUCH: the retinal OCT fluid detection and segmentation benchmark and challenge[J]. IEEE Transactions on Medical Imaging, 38, 1858-1874(2019).

    [26] Wang X T, Yu K, Wu S X et al. ESRGAN: enhanced super-resolution generative adversarial networks[M]. Leal-Taixé L, Roth S. Computer vision-ECCV 2018 workshops. Lecture notes in computer science, 11133, 63-79(2019).

    [27] Zhang W L, Liu Y H, Dong C et al. RankSRGAN: generative adversarial networks with ranker for image super-resolution[C], 3096-3105(2019).

    [28] Zhu S Q, Wang J, Cai Y F. Low-dose CT denoising algorithm based on improved cycle GAN[J]. Acta Optica Sinica, 40, 2210002(2020).

    Shuting Ke, Minghui Chen, Zexi Zheng, Yuan Yuan, Teng Wang, Longxi He, Linjie Lü, Hao Sun. Super-Resolution Reconstruction of Optical Coherence Tomography Retinal Images by Generating Adversarial Network[J]. Chinese Journal of Lasers, 2022, 49(15): 1507203
    Download Citation