• Nano-Micro Letters
  • Vol. 16, Issue 1, 088 (2024)
Jesus Ferrando-Soria1,* and Antonio Fernandez2,**
Author Affiliations
  • 1Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Valencia, Spain
  • 2School of Science, Loughborough University, Loughborough LE11 3TU, UK
  • show less
    DOI: 10.1007/s40820-023-01237-9 Cite this Article
    Jesus Ferrando-Soria, Antonio Fernandez. Integrating Levels of Hierarchical Organization in Porous Organic Molecular Materials[J]. Nano-Micro Letters, 2024, 16(1): 088 Copy Citation Text show less
    References

    [1] M.A. Little, A.I. Cooper, The chemistry of porous organic molecular materials. Adv. Funct. Mater. 30, 1909842 (2020).

    [2] C. Halliwell, J. Ferrando-Soria, A. Fernandez, Beyond microporosity in porous organic molecular materials (POMMs). Angew. Chem. Int. Ed. 62, e202217729 (2023).

    [3] Z.-J. Lin, S.A.R. Mahammed, T.-F. Liu et al., Hydrogen-bonded organic frameworks: chemistry and functions. ACS Cent. Sci. 8(12), 1589–1608 (2022).

    [4] R.-B. Lin, B. Chen, Hydrogen-bonded organic frameworks: chemistry and functions. Chem 8, 2114–2135 (2022).

    [5] S. Yu, G.-L. Xing, L.-H. Chen et al., Crystalline porous organic salts: from micropore to hierarchical pores. Adv. Mater. 32, 2003270 (2020).

    [6] T. Hasell, A.I. Cooper, Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 1, 16053 (2016).

    [7] Y. Tian, J. Yang, M. Gao et al., Organic microporous crystals driven by pure C–H..π interactions with vapor-induced crystal-to-crystal transformations. Mater. Horiz. 9, 731–739 (2022).

    [8] J. Tian, H. Wang, D.-W. Zhang et al., Supramolecular organic frameworks (SOFs): homogeneous regular 2D and 3D pores in water. Natl. Sci. Rev. 4, 426–436 (2017).

    [9] C. Chen, Z. Di, H. Li et al., An ultrastable π–π stacked porous organic molecular framework as a crystalline sponge for rapid molecular structure determination. CCS Chem. 4, 1315–1325 (2022).

    [10] C. Chen, H. Guan, H. Li et al., A noncovalent π-stacked porous organic molecular framework for selective separation of aromatics and cyclic aliphatics. Angew. Chem. Int. Ed. 61, e202201646 (2022).

    [11] D. Meng, J.L. Yang, C. Xiao et al., Noncovalent π-stacked robust topological organic framework. Proc. Natl. Acad. Sci. U.S.A. 117, 20397–20403 (2020).

    [12] G. Gong, S. Lv, J. Han et al., Halogen-bonded organic framework (XOF) based on iodonium-bridged N⋅⋅⋅I+⋅⋅⋅N interactions: A type of diphase periodic organic network. Angew. Chem. Int. Ed. 60, 14831–14835 (2021).

    [13] G. Zhang, B. Hua, A. Dey et al., Intrinsically porous molecular materials (IPMs) for natural gas and benzene derivatives separations. Acc. Chem. Res. 54, 155–168 (2021).

    [14] W. Schwieger, A.G. Machoke, T. Weissenberger et al., Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 45, 3353 (2016).

    [15] K. Geng, R. Liu, S. Dalapati et al., Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 16, 8814–8933 (2020).

    [16] Q. Wang, D. Astruc, State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2, 1438–1511 (2020).

    [17] S. Das, P. Heasman, T. Ben et al., Porous organic materials: strategic design and structure-function correlation. Chem. Rev. 3, 1515–1563 (2017).

    [18] L.-H. Chen, Y. Li, B.-L. Su, Hierarchy in materials for maximized efficiency. Natl. Sci. Rev. 11, 1626–1630 (2020).

    [19] R. Lakes, Materials with structural hierarchy. Nature 361, 511–515 (1993).

    [20] A. Levin, T.A. Hakala, L. Schnaider et al., Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    [21] L.-H. Chen, M.-H. Sun, Z. Wang et al., Hierarchically structured zeolites: from design to application. Chem. Rev. 20, 11194–11294 (2020).

    [22] L. Feng, K.-Y. Wang, J. Willman et al., Hierarchy in metal–organic frameworks. ACS Cent. Sci. 3, 359–367 (2020).

    [23] R.-R. Liang, S.-Y. Jiang, R. Han et al., Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 49, 3920–3951 (2020).

    [24] Y. Luo, M. Ahmad, A. Schug et al., Rising Up: hierarchical metal–organic frameworks in experiments and simulations. Adv. Mater. 31, 1901744 (2019).

    [25] C. Sanchez, Hierarchy: enhancing performances beyond limits. Natl. Sci. Rev. 7, 1624–1625 (2020).

    [26] H.V. Doan, H.A. Hamzah, P.K. Prabhakaran et al., Hierarchical metal–organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett. 11, 54 (2019).

    [27] C. Wang, Y. Wang, K.O. Kirlikovali et al., Ultrafine silver nanoparticle encapsulated porous molecular traps for discriminative photoelectrochemical detection of mustard gas simulants by synergistic size-exclusion and site-specific recognition. Adv. Mater. 34, 2202287 (2022).

    [28] Y.-J. Du, J.-H. Zhou, L.-X. Tan et al., Porous organic cage nanostructures for construction of complex sequential reaction networks. ACS Appl. Nano Mater. 5, 7974–7982 (2022).

    [29] F. Ren, M. Hua, Z. Yang et al., Self-assembled artificial enzyme from hybridized porous organic cages and iron oxide nanocrystals. J. Colloid Interface Sci. 621, 331–340 (2022).

    [30] S. Jiang, Y. Du, M. Marcello et al., Core–shell crystals of porous organic cages. Angew. Chem. Int. Ed. 57, 11228–11232 (2018).

    [31] B.-T. Liu, X.-H. Pan, D.-Y. Zhang et al., Construction of function-oriented core–shell nanostructures in hydrogen-bonded organic frameworks for near-infrared-responsive bacterial inhibition. Angew. Chem. Int. Ed. 60, 25701–25707 (2021).

    [32] J. Wang, Y. Mao, R. Zhang et al., In situ assembly of hydrogen-bonded organic framework on metal–organic framework: an effective strategy for constructing core–shell hybrid photocatalyst. Adv. Sci. 9, 2204036 (2022).

    [33] B. Yu, T. Meng, X. Ding et al., Hydrogen-bonded organic framework ultrathin nanosheets for efficient visible-light photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 61, e202211482 (2022).

    [34] D. Yu, H. Zhang, Z. Liu et al., Hydrogen-bonded organic framework (HOF)-based single-neural stem cell encapsulation and transplantation to remodel impaired neural networks. Angew. Chem. Int. Ed. 134, e202201485 (2022).

    [35] Q. Zou, L. Zhang, X. Yan et al., Multifunctional porous microspheres based on peptide–porphyrin hierarchical Co-assembly. Angew. Chem. Int. Ed. 126, 2398–2402 (2014).

    [36] A. Kaushik, K. Marvaniya, Y. Kulkarni et al., Large-area self-standing thin film of porous hydrogen-bonded organic framework for efficient uranium extraction from seawater. Chem 8, 2749–2765 (2022).

    [37] S. Wuttke, D.D. Medina, J.M. Rotter et al., Bringing porous organic and carbon-based materials toward thin-film applications. Adv. Funct. Mater. 28, 1801545 (2018).

    [38] Y.-H. Luo, L. Zhang, W.-X. Fang et al., 2D hydrogen-bonded organic frameworks: in-site generation and subsequent exfoliation. Chem. Commun. 57, 5901 (2021).

    [39] X.-T. He, Y.-H. Luo, D.-L. Hong et al., Atomically thin nanoribbons by exfoliation of hydrogen-bonded organic frameworks for drug delivery. ACS Appl. Nano Mater. 2, 2437 (2019).

    [40] Y.-H. Luo, X.-T. He, C. Wang et al., Interconversion between nanoribbons and nanospheres mediated by detachable ‘invisibility suit.’ Mater. Today Nano 9, 100068 (2020).

    [41] X.-T. He, Y.-H. Luo, Z.-Y. Zheng et al., Porphyrin-based hydrogen-bonded organic frameworks for the photocatalytic degradation of 9,10-diphenylanthracene. ACS Appl. Nano Mater. 2, 7719 (2019).

    [42] R. Makiura, K. Tsuchiyama, E. Pohl et al., Air/liquid interfacial nanoassembly of molecular building blocks into preferentially oriented porous organic nanosheet crystals via hydrogen bonding. ACS Nano 11, 10875–10882 (2017).

    [43] M. Brutschy, M.W. Schneider, M. Mastalerz et al., Porous organic cage compounds as highly potent affinity materials for sensing by quartz crystal microbalances. Adv. Mater. 24, 6049–6052 (2012).

    [44] Q. Song, S. Jiang, T. Hasell et al., Porous organic cage thin films and molecular-sieving membranes. Adv. Mater. 28, 2629–2637 (2016).

    [45] H. Li, Y. Huang, Y. Zhang et al., An ultrathin functional layer based on porous organic cages for selective ion sieving and lithium–sulfur batteries. Nano Lett. 22, 2030–2037 (2022).

    [46] T. Xu, B. Wu, L. Hou et al., Highly ion-permselective porous organic cage membranes with hierarchical channels. J. Am. Chem. Soc. 23, 10220–10229 (2022).

    [47] A. He, Z. Jiang, Y. Wu et al., A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nat. Mater. 21, 463–470 (2022).

    [48] S. Jiang, Q. Song, A. Massey et al., Oriented two-dimensional porous organic cage crystals. Angew. Chem. Int. Ed. 56, 9391–9395 (2017).

    [49] Z. Jiang, Y. Wang, M. Sheng et al., A highly permeable porous organic cage composite membrane for gas separation. J. Mater. Chem. A 11, 6831–6841 (2023).

    [50] J.M. Lucero, M.A. Carreon, Separation of light gases from xenon over porous organic cage membranes. ACS Appl. Mater. Interfaces 12, 32182–32188 (2020).

    [51] J.-F. Feng, T.-F. Liu, R. Cao, An electrochromic hydrogen-bonded organic framework film. Angew. Chem. Int. Ed. 59, 22392–22396 (2020).

    [52] S. Feng, Y. Shang, Z. Wang et al., Fabrication of a hydrogen-bonded organic framework membrane through solution processing for pressure-regulated gas separation. Angew. Chem. Int. Ed. 59, 3840–3845 (2020).

    [53] Y. Lei, S. Wang, Z. Lai et al., Two-dimensional C60 nano-meshes via crystal transformation. Nanoscale 11, 8692 (2019).

    [54] P. Bairi, K. Minami, W. Nakanishi, Hierarchically structured fullerene C70 cube for sensing volatile aromatic solvent vapors. ACS Nano 10, 6631–6637 (2016).

    [55] S. Tothadi, K. Koner, K. Dey et al., Morphological evolution of two-dimensional porous hexagonal trimesic acid framework. ACS Appl. Mater. Interfaces 12, 15588–15594 (2020).

    [56] Q. Tang, G. Zhang, B. Jiang et al., Self-assembled fullerene (C60)-pentacene superstructures for photodetectors. SmartMat 2, 109–118 (2021).

    [57] Q. Huang, W. Li, Z. Mao et al., Dynamic molecular weaving in a two-dimensional hydrogen-bonded organic framework. Chem 7, 1321–1332 (2021).

    [58] X.-T. He, X.-T. He, Y.-H. Luo et al., Atomically Thin nanoribbons by exfoliation of hydrogen-bonded organic frameworks for drug delivery. ACS Appl. Nano Mater. 2, 2437–2445 (2019).

    [59] F. Lorignon, A. Gossard, M. Carboni, Hierarchically porous monolithic MOFs: an ongoing challenge for industrial-scale effluent treatment. Chem. Engin. J. 393, 124765 (2020).

    [60] G. Zhang, O. Presly, F. White et al., A shape-persistent quadruply interlocked giant cage catenane with two distinct pores in the solid state. Angew. Chem. Int. Ed. 53, 5126–5130 (2014).

    [61] W. Liang, F. Carraro, M.B. Solomon et al., Enzyme encapsulation in a porous hydrogen-bonded organic framework. J. Am. Chem. Soc. 141, 14298–14305 (2019).

    [62] M. Hua, S. Wang, Y. Gong et al., Hierarchically porous organic cages. Angew. Chem. Int. Ed. 60, 12490–12497 (2021).

    [63] Q. Yin, Y.-L. Li, L. Li et al., Novel Hierarchical meso-microporous hydrogen-bonded organic framework for selective separation of acetylene and ethylene versus methane. ACS Appl. Mater. Interfaces 11, 17823–17827 (2019).

    [64] A. Ahmed, T. Hasell, R. Clowes et al., Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approach. Chem. Commun. 51, 1717–1720 (2015).

    [65] T. Hasell, H. Zhang, A.I. Cooper et al., Solution-processable molecular cage micropores for hierarchically porous materials. Adv. Mater. 24, 5732–5737 (2012).

    [66] C.A. Halliwell, S.E. Dann, J. Ferrando-Soria et al., Hierarchical assembly of a micro- and macroporous hydrogen-bonded organic framework with tailored single-crystal size. Angew. Chem. Int. Ed. 134, e202208677 (2022).

    [67] L.K. Shrestha, Y. Yamauchi, J.P. Hill et al., Fullerene crystals with bimodal pore architectures consisting of macropores and mesopores. J. Am. Chem. Soc. 135, 586–589 (2013).

    [68] L. Bao, T. Xu, K. Guo et al., Supramolecular engineering of crystalline fullerene micro-/nano-architectures. Adv. Mater. 34, 2200189 (2022).

    Jesus Ferrando-Soria, Antonio Fernandez. Integrating Levels of Hierarchical Organization in Porous Organic Molecular Materials[J]. Nano-Micro Letters, 2024, 16(1): 088
    Download Citation