• Photonics Research
  • Vol. 12, Issue 9, 1937 (2024)
Zhi Li1,2, Xuhao Luo3, Jing Wang2, Xin Yuan4..., Dongdong Teng1,5,*, Qiang Song2,6,* and Huigao Duan2,7,*|Show fewer author(s)
Author Affiliations
  • 1School of Physics, Sun Yat-sen University, Guangzhou 510275, China
  • 2Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
  • 3School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 4School of Engineering, Westlake University, Hangzhou 310030, China
  • 5e-mail: tengdd@mail.sysu.edu.cn
  • 6e-mail: songqiangshanghai@foxmail.com
  • 7e-mail: duanhg@hnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.523568 Cite this Article Set citation alerts
    Zhi Li, Xuhao Luo, Jing Wang, Xin Yuan, Dongdong Teng, Qiang Song, Huigao Duan, "Phase space framework enables a variable-scale diffraction model for coherent imaging and display," Photonics Res. 12, 1937 (2024) Copy Citation Text show less
    References

    [1] J. Skirnewskaja, T. D. Wilkinson. Automotive holographic head‐up displays. Adv. Mater., 34, 2110463(2022).

    [2] Y. Ding, Q. Yang, Y. Li. Waveguide-based augmented reality displays: perspectives and challenges. eLight, 3, 24(2023).

    [3] J. W. Goodman. Introduction to Fourier Optics(2005).

    [4] G. Makey, Ö. Yavuz, D. K. Kesim. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat. Photonics, 13, 251-256(2019).

    [5] D. Yang, W. Seo, H. Yu. Diffraction-engineered holography: beyond the depth representation limit of holographic displays. Nat. Commun., 13, 6012(2022).

    [6] L. Shi, B. Li, W. Matusik. End-to-end learning of 3D phase-only holograms for holographic display. Light Sci. Appl., 11, 247(2022).

    [7] D. Pi, J. Liu, Y. Wang. Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display. Light Sci. Appl., 11, 231(2022).

    [8] A. H. Dorrah, P. Bordoloi, V. S. de Angelis. Light sheets for continuous-depth holography and three-dimensional volumetric displays. Nat. Photonics, 17, 427-434(2023).

    [9] S. Schaffert, B. Pfau, J. Geilhufe. High-resolution magnetic-domain imaging by Fourier transform holography at 21 nm wavelength. New J. Phys., 15, 093042(2013).

    [10] L. Shi, B. Li, C. Kim. Towards real-time photorealistic 3D holography with deep neural networks. Nature, 591, 234-239(2021).

    [11] Z. Huang, D. L. Marks, D. R. Smith. Out-of-plane computer-generated multicolor waveguide holography. Optica, 6, 119-124(2019).

    [12] A. Maimone, A. Georgiou, J. S. Kollin. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph., 36, 85(2017).

    [13] O. Mendoza-yero. Dynamic freeform diffractive lens. Optica, 10, 443-449(2023).

    [14] F. Duerr, H. Thienpont. Freeform imaging systems: Fermat’s principle unlocks ‘first time right’ design. Light Sci. Appl., 10, 95(2021).

    [15] S. Kumar, Z. Tong, X. Jiang. Advances in the design and manufacturing of novel freeform optics. Int. J. Extreme Manuf., 4, 032004(2022).

    [16] Y. Lee, M. J. Low, D. Yang. Ultra-thin light-weight laser-induced-graphene (LIG) diffractive optics. Light Sci. Appl., 12, 146(2023).

    [17] S. Schmidt, S. Thiele, A. Toulouse. Tailored micro-optical freeform holograms for integrated complex beam shaping. Optica, 7, 1279-1286(2020).

    [18] K. Yin, E.-L. Hsiang, J. Zou. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light Sci. Appl., 11, 161(2022).

    [19] Z. Luo, Y. Li, J. Semmen. Achromatic diffractive liquid-crystal optics for virtual reality displays. Light Sci. Appl., 12, 230(2023).

    [20] Z. Liu, D. Wang, H. Gao. Metasurface-enabled augmented reality display: a review. Adv. Photon., 5, 034001(2023).

    [21] X. Li, Q. Chen, X. Zhang. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron. Adv., 6, 220060(2023).

    [22] A. H. Dorrah, F. Capasso. Tunable structured light with flat optics. Science, 376, eabi6860(2022).

    [23] J. Kim, J. Seong, Y. Yang. Tunable metasurfaces towards versatile metalenses and metaholograms: a review. Adv. Photon., 4, 024001(2022).

    [24] Y. Hu, L. Li, Y. Wang. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface. Nano Lett., 20, 994-1002(2020).

    [25] J. Yang, S. Gurung, S. Bej. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. Rep. Prog. Phys., 85, 036101(2022).

    [26] H. Yang, P. He, K. Ou. Angular momentum holography via a minimalist metasurface for optical nested encryption. Light Sci. Appl., 12, 79(2023).

    [27] S. So, J. Kim, T. Badloe. Multicolor and 3D holography generated by inverse-designed single-cell metasurfaces. Adv. Mater., 35, 2208520(2023).

    [28] Q. Song, X. Liu, C.-W. Qiu. Vectorial metasurface holography. Appl. Phys. Rev., 9, 011311(2022).

    [29] D. Mendlovic, Z. Zalevsky, N. Konforti. Computation considerations and fast algorithms for calculating the diffraction integral. J. Mod. Opt., 44, 407-414(1997).

    [30] D. G. Voelz, M. C. Roggemann. Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences. Appl. Opt., 48, 6132-6142(2009).

    [31] K. Matsushima, T. Shimobaba. Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields. Opt. Express, 17, 19662-19673(2009).

    [32] J. D. Schmidt. Numerical Simulation of Optical Wave Propagation with Examples in MATLAB(2010).

    [33] W. Zhang, H. Zhang, G. Jin. Band-extended angular spectrum method for accurate diffraction calculation in a wide propagation range. Opt. Lett., 45, 1543-1546(2020).

    [34] Y. Hu, Z. Wang, X. Wang. Efficient full-path optical calculation of scalar and vector diffraction using the Bluestein method. Light Sci. Appl., 9, 119(2020).

    [35] W. Zhang, H. Zhang, G. Jin. Frequency sampling strategy for numerical diffraction calculations. Opt. Express, 28, 39916-39932(2020).

    [36] H. Wei, X. Liu, X. Hao. Modeling off-axis diffraction with the least-sampling angular spectrum method. Optica, 10, 959-962(2023).

    [37] H. Yu, Y. Kim, D. Yang. Deep learning-based incoherent holographic camera enabling acquisition of real-world holograms for holographic streaming system. Nat. Commun., 14, 3534(2023).

    [38] J.-Y. Lee, L. Greengard. The type 3 nonuniform FFT and its applications. J. Comput. Phys., 206, 1-5(2005).

    [39] E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40, 749-759(1932).

    [40] M. Testorf, B. Hennelly, J. Ojeda-Castañeda. Phase-Space Optics: Fundamentals and Applications(2010).

    [41] M. A. Alonso. Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles. Adv. Opt. Photon., 3, 272-365(2011).

    [42] A. Walther. Propagation of the generalized radiance through lenses. J. Opt. Soc. Am., 68, 1606-1610(1978).

    [43] G. Situ, J. T. Sheridan. Holography: an interpretation from the phase-space point of view. Opt. Lett., 32, 3492-3494(2007).

    [44] L. Waller, G. Situ, J. W. Fleischer. Phase-space measurement and coherence synthesis of optical beams. Nat. Photonics, 6, 474-479(2012).

    [45] A. Stern, B. Javidi. Sampling in the light of Wigner distribution. J. Opt. Soc. Am. A, 21, 360-366(2004).

    [46] J. Xiao, W. Zhang, H. Zhang. Sampling analysis for Fresnel diffraction fields based on phase space representation. J. Opt. Soc. Am. A, 39, A15-A28(2022).

    [47] J. Xiao, W. Zhang, H. Zhang. Inverse diffraction in phase space. J. Opt. Soc. Am. A, 40, 175-184(2023).

    [48] J. J. Healy, M. Alper Kutay, H. M. Ozaktas. Linear Canonical Transforms: Theory and Applications, 198(2016).

    [49] M. J. Bastiaans. Transport equations for the Wigner distribution function. Opt. Acta, 26, 1265-1272(1979).

    [50] A. W. Lohmann. Image rotation, Wigner rotation, and the fractional Fourier transform. J. Opt. Soc. Am. A, 10, 2181-2186(1993).

    [51] B. M. Hennelly, J. T. Sheridan. Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. J. Opt. Soc. Am. A, 22, 917-927(2005).

    [52] E. Tseng, S. Colburn, J. Whitehead. Neural nano-optics for high-quality thin lens imaging. Nat. Commun., 12, 6493(2021).

    [53] J. R. Shewell, E. Wolf. Inverse diffraction and a new reciprocity theorem. J. Opt. Soc. Am., 58, 1596-1603(1968).

    [54] X. Zhou, Q. Song, X. Yang. Generating phase-only diffractive optical elements using adaptive constraints in the Fourier domain. Opt. Commun., 535, 129360(2023).

    Zhi Li, Xuhao Luo, Jing Wang, Xin Yuan, Dongdong Teng, Qiang Song, Huigao Duan, "Phase space framework enables a variable-scale diffraction model for coherent imaging and display," Photonics Res. 12, 1937 (2024)
    Download Citation