• Optics and Precision Engineering
  • Vol. 30, Issue 17, 2094 (2022)
Yifan HU, Haijun ZHANG*, and Kaijia NI
Author Affiliations
  • State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou310027, China
  • show less
    DOI: 10.37188/OPE.20223000.0223 Cite this Article
    Yifan HU, Haijun ZHANG, Kaijia NI. Mini-piezo-element drive microactuator based on triangular amplification[J]. Optics and Precision Engineering, 2022, 30(17): 2094 Copy Citation Text show less
    References

    [1] G BINNIG, C F QUATE, C GERBER. Atomic force microscope. Physical Review Letters, 56, 930-933(1986).

    [2] 2章海军, 陈佳骏, 王英达, 等. 无线控制式原子力显微镜系统[J]. 光学 精密工程, 2018, 26(9): 2206-2212. doi: 10.3788/ope.20182609.2205ZHANGH J, CHENJ J, WANGY D, et al. Development of wirelessly controlled atomic force microscope[J]. Opt. Precision Eng., 2018, 26(9): 2206-2212. (in Chinese). doi: 10.3788/ope.20182609.2205

    [3] H HABIBULLAH. 30 Years of atomic force microscopy: creep, hysteresis, cross-coupling, and vibration problems of piezoelectric tube scanners. Measurement, 159, 107776(2020).

    [4] W XU, T KING. Flexure hinges for piezoactuator displacement amplifiers: flexibility, accuracy, and stress considerations. Precision Engineering, 19, 4-10(1996).

    [5] F N CUI, Y M LI, J N QIAN. Development of a 3-DOF flexible micro-motion platform based on a new compound lever amplification mechanism. Micromachines, 12, 686(2021).

    [6] 6黄卫清, 史小庆, 王寅. 菱形压电微位移放大机构的设计[J]. 光学 精密工程, 2015, 23(3): 803-809. doi: 10.3788/OPE.20152303.0803HUANGW Q, SHIX Q, WANGY. Design of diamond piezoelectric micro displacement amplification mechanism[J]. Opt. Precision Eng., 2015, 23(3): 803-809. (in Chinese). doi: 10.3788/OPE.20152303.0803

    [7] T MEIER, A FÖRSTE, A TAVASSOLIZADEH et al. A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans. Beilstein Journal of Nanotechnology, 6, 451-461(2015).

    [8] S IQBAL, A MALIK. A review on MEMS based micro displacement amplification mechanisms. Sensors and Actuators A: Physical, 300, 111666(2019).

    [9] 9李玄, 周双武, 丁冰晓, 等. 基于新型二级杠杆机构微定位平台的设计与分析[J]. 机械设计, 2021, 38(2): 102-107.LIX, ZHOUSH W, DINGB X, et al. Design and analysis of the micro-positioning platform based on the novel two-level lever amplification mechanism[J]. Journal of Machine Design, 2021, 38(2): 102-107. (in Chinese)

    [10] 10闫鹏, 李金银. 压电陶瓷驱动的长行程快刀伺服机构设计[J]. 光学 精密工程, 2020, 28(2): 390-397.YANP, LIJ Y. Design of piezo-actuated long-stroke fast tool servo mechanism[J]. Opt. Precision Eng., 2020, 28(2): 390-397. (in Chinese)

    [11] M GHAFARIAN, B SHIRINZADEH, A AL-JODAH et al. FEA-based optimization of a complete structure of a monolithic z/tip/tilt micromanipulator. Journal of Micro-Bio Robotics, 16, 93-110(2020).

    [12] A MARCHESI, K UMEDA, T KOMEKAWA et al. An ultra-wide scanner for large-area high-speed atomic force microscopy with megapixel resolution. Scientific Reports, 11, 13003(2021).

    [13] Y L TIAN, Y MA, F J WANG et al. A novel XYZ micro/nano positioner with an amplifier based on L-shape levers and half-bridge structure. Sensors and Actuators A: Physical, 302, 111777(2020).

    [14] K B CHOI, J LEE, G KIM et al. Design and analysis of a flexure-based parallel XY stage driven by differential piezo forces. International Journal of Precision Engineering and Manufacturing, 21, 1547-1561(2020).

    [15] 15张子尧. 显微目标的微纳米运动测量方法及技术研究[D]. 杭州: 浙江大学, 2021.ZHANGZ Y. Micro-motion Measurement Method and Technique of Microscopic Objects[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)

    Yifan HU, Haijun ZHANG, Kaijia NI. Mini-piezo-element drive microactuator based on triangular amplification[J]. Optics and Precision Engineering, 2022, 30(17): 2094
    Download Citation