• Photonics Research
  • Vol. 13, Issue 5, 1375 (2025)
Tao Jia1, Enbo Xing2,*, Jianglong Li2, Jiamin Rong1..., Hongbo Yue2, Yujie Zhang1, Guohui Xing1, Yanru Zhou2, Wenyao Liu2, Jun Tang1,3,4 and Jun Liu2,5|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Widegap Semiconductor Optoelectronic Materials and Technologies, School of Semiconductor and Physics, North University of China, Taiyuan 030051, China
  • 2State Key Laboratory of Extreme Environment Optoelectronic Dynamic Testing Technology and Instrument, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
  • 3Shanxi Provincial Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
  • 4e-mail: tangjun@nuc.edu.cn
  • 5e-mail: liuj@nuc.edu.cn
  • show less
    DOI: 10.1364/PRJ.549972 Cite this Article Set citation alerts
    Tao Jia, Enbo Xing, Jianglong Li, Jiamin Rong, Hongbo Yue, Yujie Zhang, Guohui Xing, Yanru Zhou, Wenyao Liu, Jun Tang, Jun Liu, "High-precision quasi-static sensing method based on WGM resonator self-modulation," Photonics Res. 13, 1375 (2025) Copy Citation Text show less
    References

    [1] M. R. Foreman, J. D. Swaim, F. Vollmer. Whispering gallery mode sensors. Adv. Opt. Photonics, 7, 168-240(2015).

    [2] X. Jiang, A. J. Qavi, S. H. Huang. Whispering-gallery sensors. Matter, 3, 371-392(2020).

    [3] B.-B. Li, L. Ou, Y. Lei. Cavity optomechanical sensing. Nanophotonics, 10, 2799-2832(2021).

    [4] J. Lim, W. Liang, A. A. Savchenkov. Probing 10 μK stability and residual drifts in the cross-polarized dual-mode stabilization of single-crystal ultrahigh-Q optical resonators. Light Sci. Appl., 8, 1(2019).

    [5] K. J. Vahala. Optical microcavities. Opt. Microcavities, 424, 839-846(2003).

    [6] X. Xu, W. Chen, G. Zhao. Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping. Light Sci. Appl., 7, 62(2018).

    [7] X. Zhao, Z. Guo, Y. Zhou. Optical whispering-gallery-mode microbubble sensors. Micromachines, 13, 592(2022).

    [8] S. Basiri-Esfahani, A. Armin, S. Forstner. Precision ultrasound sensing on a chip. Nat. Commun., 10, 132(2019).

    [9] T. Xing, E. Xing, T. Jia. Fast switching acoustic sensor with ultrahigh sensitivity and wide dynamic response range based on ultrahigh-Q CaF2 resonator. J. Lightwave Technol., 40, 5775-5780(2022).

    [10] H. Yang, X. Cao, Z. G. Hu. Micropascal-sensitivity ultrasound sensors based on optical microcavities. Photonics Res., 11, 1139-1147(2023).

    [11] X. Cao, H. Yang, Z.-L. Wu. Ultrasound sensing with optical microcavities. Light Sci. Appl., 13, 159(2024).

    [12] B.-B. Li, J. Bílek, U. B. Hoff. Quantum enhanced optomechanical magnetometry. Optica, 5, 850-856(2018).

    [13] S. Zhao, X. Zhang, Q. Zhang. Packaged optofluidic microbottle resonator for high-sensitivity bidirectional magnetic field sensing. Opt. Lett., 47, 2766-2769(2022).

    [14] Z.-G. Hu, Y.-M. Gao, J.-F. Liu. Picotesla-sensitivity microcavity optomechanical magnetometry. Light Sci. Appl., 13, 279(2024).

    [15] J. Li, E. Xing, T. Jia. Ultra-sensitive magnetic sensor based on resonator with asymmetric wedge structure. IEEE Sens. J., 24, 12244-12250(2024).

    [16] A. Schliesser, G. Anetsberger, R. Rivière. High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators. New J. Phys., 10, 095015(2008).

    [17] G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier. Near-field cavity optomechanics with nanomechanical oscillators. Nat. Phys., 5, 909-914(2009).

    [18] G. Anetsberger, E. Gavartin, O. Arcizet. Measuring nanomechanical motion with an imprecision below the standard quantum limit. Phys. Rev., 82, 061804(2010).

    [19] A. G. Krause, M. Winger, T. D. Blasius. A high-sensitivity microchip optomechanical accelerometer. Nat. Photonics, 6, 768-772(2012).

    [20] Y.-H. Lai, M.-G. Suh, Y.-K. Lu. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photonics, 14, 345-349(2020).

    [21] F. Zhou, Y. Bao, R. Madugani. Broadband thermomechanically limited sensing with an optomechanical accelerometer. Optica, 8, 350-356(2021).

    [22] T. Xing, E. Xing, T. Jia. An ultrahigh sensitivity acoustic sensor system for weak signal detection based on an ultrahigh-Q CaF2 resonator. Microsyst. Nanoeng., 9, 65(2023).

    [23] X. Ma, Z. Cai, C. Zhuang. Integrated microcavity electric field sensors using Pound-Drever-Hall detection. Nat. Commun., 15, 1386(2024).

    [24] P. Liu, Y. Shi. Simultaneous measurement of refractive index and temperature using a dual polarization ring. Appl. Opt., 55, 3537-3541(2016).

    [25] Z. Ding, P. Liu, J. Chen. On-chip simultaneous sensing of humidity and temperature with a dual-polarization silicon microring resonator. Opt. Express, 27, 28649-28659(2019).

    [26] P. Zhang, D. He, C. Zhang. FDTD simulation: simultaneous measurement of the refractive index and the pressure using microdisk resonator with two whispering-gallery modes. Sensors, 20, 3955(2020).

    [27] L. Ye, X. Liu, D. Pei. Simultaneous detection of relative humidity and temperature based on silicon on-chip cascaded photonic crystal nanobeam cavities. Crystals, 11, 1559(2021).

    [28] Y. Wu, B. Duan, J. Song. Simultaneous temperature and pressure sensing based on a single optical resonator. Opt. Express, 31, 18851-18861(2023).

    [29] W. Mao, F. Li, D. Jia. On-chip multimode WGM microresonator with cross-correlation algorithm for enhanced sensing. Laser Photonics Rev., 18, 2301303(2024).

    [30] M. R. Foreman, W.-L. Jin, F. Vollmer. Optimizing detection limits in whispering gallery mode biosensing. Opt. Express, 22, 5491-5511(2014).

    [31] M. Wu, A. C. Hryciw, C. Healey. Dissipative and dispersive optomechanics in a nanocavity torque sensor. Phys. Rev. X, 4, 021052(2014).

    [32] B. J. Reschovsky, D. A. Long, F. Zhou. Intrinsically accurate sensing with an optomechanical accelerometer. Opt. Express, 30, 19510-19523(2022).

    [33] J.-W. Meng, S.-J. Tang, J. Sun. Dissipative acousto-optic interactions in optical microcavities. Phys. Rev. Lett., 129, 073901(2022).

    [34] T. Jia, J. Rong, J. Li. Ultrahigh resolution acceleration sensing based on prism-microcavity dissipative coupling architecture. ACS Photonics, 11, 428-436(2024).

    [35] M. Jin, S.-J. Tang, J.-H. Chen. 1/f-noise-free optical sensing with an integrated heterodyne interferometer. Nat. Commun., 12, 1973(2021).

    [36] W. P. Robins. Phase Noise in Signal Sources: Theory and Applications(1984).

    [37] J. Xia, Q. Qiao, H. Sun. Ultrasensitive nanoscale optomechanical electrometer using photonic crystal cavities. Nanophotonics, 11, 1629-1642(2022).

    [38] N. Liu, L. Shi, S. Zhu. Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing. Opt. Express, 26, 195-203(2018).

    [39] Y.-S. Jang, J. Lim, W. Wang. Measurement of sub-fm/Hz1/2 displacement spectral densities in ultrahigh-Q single-crystal microcavities with hertz-level lasers. Photonics Res., 10, 1202-1209(2022).

    [40] J. Liao, A. Qavi, M. Adolphson. High-Q WGM resonators encapsulated in PDMS for highly sensitive displacement detection. J. Lightwave Technol., 41, 2862-2869(2023).

    [41] X. Gan, H. Clevenson, D. Englund. Polymer photonic crystal nanocavity for precision strain sensing. ACS Photonics, 4, 1591-1594(2017).

    [42] Z. Xu, Z. Wang, L. Chen. Two-dimensional displacement sensor based on a dual-cavity Fabry-Perot interferometer. J. Lightwave Technol., 40, 1195-1201(2022).

    [43] T. Li, Y. Liu, W. Xu. Light control of a movable microbubble in an ethanol-filled fiber microcavity for displacement measurement. Opt. Lett., 49, 790-793(2024).

    [44] J. Xu, Y. Mao, Z. Li. Single-cavity loss-enabled nanometrology. Nat. Nanotechnol., 19, 1472-1477(2024).

    Tao Jia, Enbo Xing, Jianglong Li, Jiamin Rong, Hongbo Yue, Yujie Zhang, Guohui Xing, Yanru Zhou, Wenyao Liu, Jun Tang, Jun Liu, "High-precision quasi-static sensing method based on WGM resonator self-modulation," Photonics Res. 13, 1375 (2025)
    Download Citation