[1] McAdams, H.H., Shapiro, L.: Circuit simulation of genetic networks. Science 269(5224), 650–656 (1995)
[2] Saraswat, K.C., Mohammadi, F.: Effect of scaling of interconnections on the time delay of VLSI circuits. IEEE Trans. Electron Devices 29(4), 645–650 (1982)
[3] Mack, C.A.: Fifty years of Moore’s law. IEEE Trans. Semicond. Manuf. 24(2), 202–207 (2011)
[4] Theis, T.N., Wong, H.P.: The end of Moore’s law: a new beginning for information technology. Comput. Sci. Eng. 19(2), 41–50 (2017)
[5] Waldrop, M.M.: The chips are down for Moore’s law. Nature 530(7589), 144–147 (2016)
[6] Caulfield, H.J., Dolev, S.: Why future supercomputing requires optics. Nat. Photon. 4(5), 261–263 (2010)
[7] Zhang, X., Wang, Y., Sun, J., Liu, D., Huang, D.: All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs. Opt. Express 12(3), 361–366 (2004)
[8] Fu, Y., Hu, X., Lu, C., Yue, S., Yang, H., Gong, Q.: All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 12(11), 5784–5790 (2012)
[9] Qian, C., Lin, X., Lin, X., Xu, J., Sun, Y., Li, E., Zhang, B., Chen, H.: Performing optical logic operations by a diffractive neural network. Light Sci. Appl. 9(1), 59 (2020)
[10] Soref, R.A.: Tutorial: integrated-photonic switching structures. APL Photon. 3(2), 021101 (2018)
[11] Miller, D.A.B.: Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol. 35(3), 346–396 (2017)
[12] Thomson, D., Zilkie, A., Bowers, J.E., Komljenovic, T., Reed, G.T., Vivien, L., Marris-Morini, D., Cassan, E., Virot, L., Fédéli, J.M., Hartmann, J.M., Schmid, J.H., Xu, D.X., Boeuf, F., O’Brien, P., Mashanovich, G.Z., Nedeljkovic, M.: Roadmap on silicon photonics. J. Opt. 18(7), 073003 (2016)
[13] Xu, Q., Lipson, M.: All-optical logic based on silicon microring resonators. Opt. Express 15(3), 924–929 (2007)
[14] Hardy, J., Shamir, J.: Optics inspired logic architecture. Opt. Express 15(1), 150–165 (2007)
[15] Minzioni, P., Lacava, C., Tanabe, T., Dong, J., Hu, X., Csaba, G., Porod, W., Singh, G., Willner, A.E., Almaiman, A., Torres-Company, V., Schroder, J., Peacock, A.C., Strain, M.J., Parmigiani, F., Contestabile, G., Marpaung, D., Liu, Z., Bowers, J.E., Chang, L., Fabbri, S., Vázquez, M.R., Bharadwaj, V., Eaton, S.M., Lodahl, P., Zhang, X., Eggleton, B.J., Munro, W.J., Nemoto, K., Morin, O., Laurat, J., Nunn, J.: Roadmap on all-optical processing. J. Opt. 21(6), 063001 (2019)
[16] Li, F., Vo, T.D., Husko, C., Pelusi, M., Xu, D.X., Densmore, A., Ma, R., Janz, S., Eggleton, B.J., Moss, D.J.: All-optical XOR logic gate for 40 Gb/s DPSK signals via FWM in a silicon nanowire. Opt. Express 19(21), 20364–20371 (2011)
[17] Dong, W., Huang, Z., Hou, J., Santos, R., Zhang, X.: Integrated all-optical programmable logic array based on semiconductor optical amplifiers. Opt. Lett. 43(9), 2150–2153 (2018)
[18] Fjelde, T., Wolfson, D., Kloch, A., Dagens, B., Coquelin, A., Guillemot, I., Gaborit, F., Poingt, F., Renaud, M.: Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOAbased interferometric wavelength converter. Electron. Lett. 36(22), 1863–1864 (2000)
[19] Xiong, M., Lei, L., Ding, Y., Huang, B., Ou, H., Peucheret, C., Zhang, X.: All-optical 10 Gb/s AND logic gate in a silicon microring resonator. Opt. Express 21(22), 25772–25779 (2013)
[20] Rakshit, J.K., Roy, J.N., Chattopadhyay, T.: Design of micro-ring resonator based all-optical parity generator and checker circuit. Opt. Commun. 303, 30–37 (2013)
[21] Liu, Y., Qin, F., Meng, Z.M., Zhou, F., Mao, Q.H., Li, Z.Y.: All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt. Express 19(3), 1945–1953 (2011)
[22] Husko, C., Vo, T.D., Corcoran, B., Li, J., Krauss, T.F., Eggleton, B.J.: Ultracompact all-optical XOR logic gate in a slowlight silicon photonic crystal waveguide. Opt. Express 19(21), 20681–20690 (2011)
[23] Rani, P., Kalra, Y., Sinha, R.K.: Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal. Opt. Commun. 374, 148–155 (2016)
[24] Fu, Y., Hu, X., Gong, Q.: Silicon photonic crystal all-optical logic gates. Phys. Lett. Part A 377(3–4), 329–333 (2013)
[25] Birr, T., Zywietz, U., Chhantyal, P., Chichkov, B.N., Reinhardt, C.: Ultrafast surface plasmon-polariton logic gates and halfadder. Opt. Express 23(25), 31755–31765 (2015)
[26] Wei, H., Wang, Z., Tian, X., Kall, M., Xu, H.: Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun. 2(1), 387 (2011)
[27] Ye, Y., Xie, Y., Liu, Y., Wang, S., Zhang, J., Liu, Y.: Design of a compact logic device based on plasmon-induced transparency. IEEE Photon. Technol. Lett. 29(8), 647–650 (2017)
[28] Hou, J., Chen, L., Dong, W., Zhang, X.: 40 Gb/s reconfigurable optical logic gates based on FWM in silicon waveguide. Opt. Express 24(3), 2701–2711 (2016)
[29] Yin, Z., Wu, J., Zang, J., Kong, D., Qiu, J., Shi, J., Li, W., Wei, S., Lin, J.: All-optical logic gate for XOR operation between 40-Gbaud QPSK tributaries in an ultra-short silicon nanowire. IEEE Photon. J. 6(3), 4500307 (2014)
[30] Liang, T.K., Nunes, L.R., Tsuchiya, M., Abedin, K.S., Miyazaki, T., Van Thourhout, D., Bogaerts, W., Dumon, P., Baets, R., Tsang, H.K.: High speed logic gate using two-photon absorption in silicon waveguides. Opt. Commun. 265(1), 171–174 (2006)
[31] Gui, C., Wang, J.: Simultaneous optical half-adder and halfsubtracter using a single-slot waveguide. IEEE Photon. J. 5(5), 6602010 (2013)
[32] Zhang, F., Zhang, L., Yang, L.: Directed logic circuits based on silicon microring resonators. Laser Optoelectronics Prog. 51(11), 110004 (2014)
[33] Gostimirovic, D., Ye, W.N.: Ultracompact CMOS-compatible optical logic using carrier depletion in microdisk resonators. Sci. Rep. 7(1), 12603 (2017)
[34] Winzer, P.J.: Modulation and multiplexing in optical communications. In: Proceedings of Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. Baltimore: IEEE, 2009: 1–2
[35] Soref, R., De Leonardis, F., Ying, Z., Passaro, V.M.N., Chen, R.T.: Silicon-based group-IV OEO devices for gain, logic, and wavelength conversion. ACS Photon. 7(3), 800–811 (2020)
[36] Zhang, L., Ji, R., Jia, L., Yang, L., Zhou, P., Tian, Y., Chen, P., Lu, Y., Jiang, Z., Liu, Y., Fang, Q., Yu, M.: Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators. Opt. Lett. 35(10), 1620–1622 (2010)
[37] Xing, J., Li, Z., Zhou, P., Gong, Y., Yu, Y., Tan, M., Yu, J.: Compact silicon-on-insulator-based 2 × 2 Mach-Zehnder interferometer electro-optic switch with low crosstalk. Chin. Opt. Lett. 13(6), 061301–061304 (2015)
[38] Zhao, S., Lu, L., Zhou, L., Li, D., Guo, Z., Chen, J.: 16× 16 silicon Mach-Zehnder interferometer switch actuated with waveguide microheaters. Photon. Res. 4(5), 202–207 (2016)
[39] Gong, H., Chen, X., Qu, Y., Li, Q., Yan, M., Qiu, M.: Photothermal switching based on silicon Mach-Zehnder interferometer integrated with light absorber. IEEE Photon. J. 8(2), 7802610 (2016)
[40] Qiao, L., Tang, W., Chu, T.: 32× 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci. Rep. 7(1), 42306 (2017)
[41] Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Selvaraja, S.K., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photon. Rev. 6(1), 47–73 (2012)
[42] Yu, H., Ying, D., Pantouvaki, M., Van Campenhout, J., Absil, P., Hao, Y., Yang, J., Jiang, X.: Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators. Opt. Express 22(12), 15178–15189 (2014)
[43] Wu, J., Cao, P., Pan, T., Yang, Y., Qiu, C., Tremblay, C., Su, Y.: Compact on-chip 1× 2 wavelength selective switch based on silicon microring resonator with nested pairs of subrings. Photon. Res. 3(1), 9–14 (2015)
[44] Cheng, Q., Dai, L.Y., Abrams, N.C., Hung, Y.H., Morrissey, P.E., Glick, M., O’Brien, P., Bergman, K.: Ultralow-crosstalk, strictly non-blocking microring-based optical switch. Photon. Res. 7(2), 155–161 (2019)
[45] Song, J., Fang, Q., Luo, X., Cai, H., Liow, T.Y., Yu, M.B., Lo, G.Q., Kwong, D.L.: Thermo-optical tunable planar ridge microdisk resonator in silicon-on-insulator. Opt. Express 19(12), 11220–11227 (2011)
[46] Yu, L., Yin, Y., Shi, Y., Dai, D., He, S.: Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica 3(2), 159–166 (2016)
[47] Gostimirovic, D., De Leonardis, F., Soref, R., Passaro, V.M.N., Ye, W.N.: Ultrafast electro-optical disk modulators for logic, communications, optical repeaters, and wavelength converters. Opt. Express 28(17), 24874–24888 (2020)
[48] Soltani, M., Yegnanarayanan, S., Adibi, A.: Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics. Opt. Express 15(8), 4694–4704 (2007)
[49] Deng, Q., Liu, L., Zhang, R., Li, X., Michel, J., Zhou, Z.: Athermal and flat-topped silicon Mach-Zehnder filters. Opt. Express 24(26), 29577–29582 (2016)
[50] Chen, S., Shi, Y., He, S., Dai, D.: Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Opt. Lett. 41(4), 836–839 (2016)
[51] Long, Y., Wang, J.: Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator. Opt. Express 23(14), 17739–17750 (2015)
[52] Li, J., Yang, S., Chen, H., Chen, M.: Subwavelength hole defect assisted microring resonator for a compact rectangular filter. Opt. Lett. 45(11), 3123–3126 (2020)
[53] Zhang, Y., Hu, X., Chen, D., Wang, L., Li, M., Feng, P., Xiao, X., Yu, S.: Design and demonstration of ultra-high-Q silicon microring resonator based on a multi-mode ridge waveguide. Opt. Lett. 43(7), 1586–1589 (2018)
[54] Watts, M.R., Trotter, D.C., Young, R.W., Lentine, A.L.: Ultralow power silicon microdisk modulators and switches. In: Proceedings of 5th IEEE International Conference on Group IV Photonics. Sorrento: IEEE, 2008: 4–6
[55] Xu, K., Chen, Y., Li, C., Chen, X., Chen, Z., Wong, C.Y., Tsang, H.K.: An ultracompact OSNR monitor based on an integrated silicon microdisk resonator. IEEE Photon. J. 4(5), 1365–1371 (2012)
[56] Singh, B.R., Rawal, S.: Photonic-crystal-based all-optical NOT logic gate. J. Opt. Soc. Am. A 32(12), 2260–2263 (2015)
[57] Han, B., Yu, J., Wang, W., Zhang, L., Hu, H., Yang, E.: Experimental study on all-optical half-adder based on semiconductor optical amplifier. Optoelectron. Lett. 5(3), 161–164 (2009)
[58] Hall, K.L., Donnelly, J.P., Groves, S.H., Fennelly, C.I., Bailey, R.J., Napoleone, A.: 40-Gbit/s all-optical circulating shift register with an inverter. Opt. Lett. 22(19), 1479–1481 (1997)
[59] Dimitriadou, E., Zoiros, K.E.: On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifierbased Mach-Zehnder interferometer. Opt. Laser Technol. 44(3), 600–607 (2012)
[60] Zhang, L., Ji, R., Tian, Y., Yang, L., Zhou, P., Lu, Y., Zhu, W., Liu, Y., Jia, L., Fang, Q., Yu, M.: Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators. Opt. Express 19(7), 6524–6540 (2011)
[61] Zhang, L., Ding, J., Tian, Y., Ji, R., Yang, L., Chen, H., Zhou, P., Lu, Y., Zhu, W., Min, R.: Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations. Opt. Express 20(11), 11605–11614 (2012)
[62] Tian, Y., Zhang, L., Yang, L.: Directed XOR/XNOR logic gates using U-to-U waveguides and two microring resonators. IEEE Photon. Technol. Lett. 25(1), 18–21 (2013)
[63] Zhu, W., Tian, Y., Zhang, L., Yang, L.: Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators. IEEE Photon. Technol. Lett. 25(14), 1305–1308 (2013)
[64] Tian, Y., Zhao, Y., Chen, W., Guo, A., Li, D., Zhao, G., Liu, Z., Xiao, H., Liu, G., Yang, J.: Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators. Opt. Express 23(20), 26342–26355 (2015)
[65] Tian, Y., Li, D., Liu, Z., Xiao, H., Zhao, G., Yang, J., Zhao, Y., Han, G., Gao, X.: Simulation and demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators. IEEE Photon. J. 8(2), 7802211 (2016)
[66] Tian, Y., Zhang, L., Ji, R., Yang, L., Zhou, P., Chen, H., Ding, J., Zhu, W., Lu, Y., Jia, L., Fang, Q., Yu, M.: Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators. Opt. Lett. 36(9), 1650–1652 (2011)
[67] Tian, Y., Zhang, L., Yang, L.: Electro-optic directed AND/NAND logic circuit based on two parallel microring resonators. Opt. Express 20(15), 16794–16800 (2012)
[68] Zhou, P., Zhang, L., Tian, Y., Yang, L.: 10 GHz electro-optical OR/NOR directed logic device based on silicon micro-ring resonators. Opt. Lett. 39(7), 1937–1940 (2014)
[69] Tian, Y., Zhang, L., Xu, Q., Yang, L.: XOR/XNOR directed logic circuit based on coupled-resonator-induced transparency. Laser Photon. Rev. 7(1), 109–113 (2013)
[70] Xu, Q., Sandhu, S., Povinelli, M.L., Shakya, J., Fan, S., Lipson, M.: Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96(12), 123901 (2006)
[71] Ding, J., Yang, L., Chen, Q., Zhang, L., Zhou, P.: Demonstration of a directed XNOR/XOR optical logic circuit based on silicon Mach-Zehnder interferometer. Optics Communications 395, 183–187 (2017)
[72] Xiao, H., Han, X., Jiang, Y., Ren, G., Mitchell, A., Gao, D., Yang, J., Tian, Y.: Demonstration of various optical directed logic operations by using an integrated photonic circuit. Opt. Lett. 46(10), 2457–2460 (2021)
[73] Tian, Y., Zhang, L., Ji, R., Yang, L., Zhou, P., Ding, J., Chen, H., Zhu, W., Lu, Y., Fang, Q., Jia, L., Yu, M.: Demonstration of a directed optical decoder using two cascaded microring resonators. Opt. Lett. 36(17), 3314–3316 (2011)
[74] Chen, Q., Zhang, F., Zhang, L., Tian, Y., Zhou, P., Ding, J., Yang, L.: 1 Gbps directed optical decoder based on two cascaded microring resonators. Opt. Lett. 39(14), 4255–4258 (2014)
[75] Tian, Y., Zhang, L., Ji, R., Yang, L., Xu, Q.: Demonstration of a directed optical encoder using microring-resonator-based optical switches. Opt. Lett. 36(19), 3795–3797 (2011)
[76] Xiao, H., Li, D., Liu, Z., Han, X., Chen, W., Zhao, T., Tian, Y., Yang, J.: Experimental realization of a CMOS-compatible optical directed priority encoder using cascaded micro-ring resonators. Nanophotonics 7(4), 727–733 (2018)
[77] Tian, Y., Yang, L., Zhang, L., Ji, R., Ding, J., Zhou, P., Zhu, W., Lu, Y.: Directed optical half-adder based on two cascaded microring resonators. IEEE Photon. Technol. Lett. 24(8), 643–645 (2012)
[78] Wu, X., Deng, L., Meng, Y., Yang, J., Tian, Y.: Demonstration of a silicon photonic circuit for half-add operations using cascaded microring resonators. IEEE Photon. J. 9(1), 2700209 (2016)
[79] Liu, Z., Zhao, Y., Xiao, H., Deng, L., Meng, Y., Guo, X., Liu, G., Tian, Y., Yang, J.: Demonstration of an optical directed halfsubtracter using integrated silicon photonic circuits. Appl. Opt. 57(10), 2564–2569 (2018)
[80] Yang, L., Guo, C., Zhu, W., Zhang, L., Sun, C.: Demonstration of a directed optical comparator based on two cascaded microring resonators. IEEE Photon. Technol. Lett. 27(8), 809–812 (2015)
[81] Tian, Y., Xiao, H., Wu, X., Liu, Z., Meng, Y., Deng, L., Guo, X., Liu, G., Yang, J.: Experimental realization of an optical digital comparator using silicon microring resonators. Nanophotonics 7(3), 669–675 (2018)
[82] Law, F.K., Uddin, M.R., Hashim, H., Won, Y.H.: Demonstration of photonic micro-ring resonator based digital bit magnitude comparator. Opt. Quant. Electron. 51(1), 1–13 (2019)
[83] Liu, Z., Wu, X., Xiao, H., Han, X., Chen, W., Liao, M., Zhao, T., Jia, H., Yang, J., Tian, Y.: On-chip optical parity checker using silicon photonic integrated circuits. Nanophotonics 7(12), 1939–1948 (2018)
[84] Tian, Y., Liu, Z., Ying, T., Xiao, H., Meng, Y., Deng, L., Zhao, Y., Guo, A., Liao, M., Liu, G., Yang, J.: Experimental demonstration of an optical Feynman gate for reversible logic operation using silicon micro-ring resonators. Nanophotonics 7(1), 333–337 (2018)
[85] Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nat. Photon. 4(8), 518–526 (2010)
[86] Xiao, X., Xu, H., Li, X., Li, Z., Chu, T., Yu, Y., Yu, J.: Highspeed, low-loss silicon Mach-Zehnder modulators with doping optimization. Opt. Express 21(4), 4116–4125 (2013)
[87] Chen, W., Yang, L., Wang, P., Zhang, Y., Zhou, L., Yang, T., Wang, Y., Yang, J.: Electro-optical logic gates based on graphene–silicon waveguides. Opt. Commun. 372, 85–90 (2016)
[88] Zivarian, H., Zarifkar, A.: Compact electro-optical programmable logic device based on graphene–silicon switches. Photon. Netw. Commun. 38(2), 219–230 (2019)
[89] Shu, H., Jin, M., Tao, Y., Wang, X.: Graphene-based silicon modulators. Front. Inf. Technol. Electronic Eng. 20(4), 458–471 (2019)
[90] Yuan, S., Hu, C., Pan, A., Ding, Y., Wang, X., Qu, Z., Wei, J., Liu, Y., Zeng, C., Xia, J.: Photonic devices based on thinfilm lithium niobate on insulator. J. Semicond. 42(4), 041304 (2021)
[91] Huang, X., Liu, Y., Li, Z., Guan, H., Wei, Q., Tan, M., Li, Z.: 40 GHz high-efficiency Michelson interferometer modulator on a silicon-rich nitride and thin-film lithium niobate hybrid platform. Opt. Lett. 46(12), 2811–2814 (2021)
[92] Wang, J., Xu, S., Chen, J., Zou, W.: A heterogeneous silicon on lithium niobate modulator for ultra-compact and high-performance photonic integrated circuits. IEEE Photonics J. 13(1), 4900112 (2021)
[93] Xu, Q., Soref, R.: Reconfigurable optical directed-logic circuits using microresonator-based optical switches. Opt. Express 19(6), 5244–5259 (2011)
[94] Qiu, C., Ye, X., Soref, R., Yang, L., Xu, Q.: Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits. Opt. Lett. 37(19), 3942–3944 (2012)
[95] Qiu, C., Gao, W., Soref, R., Robinson, J.T., Xu, Q.: Reconfigurable electro-optical directed-logic circuit using carrierdepletion micro-ring resonators. Opt. Lett. 39(24), 6767–6770 (2014)
[96] Qi, Y., Qiu, C., Gao, W., Zhong, X., Su, Y.: Silicon reconfigurable electro-optical logic circuit enabled by a single-wavelength light input. IEEE Photon. Technol. Lett. 31(6), 435–438 (2019)
[97] Tian, Y., Zhao, G., Liu, Z., Guo, A., Xiao, H., Wu, X., Meng, Y., Deng, L., Guo, X., Liu, G., Yang, J.: Reconfigurable electro-optic logic circuits using microring resonator-based optical switch array. IEEE Photon. J. 8(2), 7801908 (2016)
[98] Tian, Y., Liu, Z., Xiao, H., Zhao, G., Liu, G., Yang, J., Ding, J., Zhang, L., Yang, L.: Experimental demonstration of a reconfigurable electro-optic directed logic circuit using cascaded carrierinjection micro-ring resonators. Sci. Rep. 7(1), 6410 (2017)
[99] Ying, Z., Feng, C., Zhao, Z., Soref, R., Pan, D.Z., Chen, R.T.: Integrated multi-operand electro-optic logic gates for optical computing. Appl. Phys. Lett. 115(17), 171104 (2019)
[100] Ying, Z., Wang, Z., Zhao, Z., Dhar, S., Pan, D.Z., Soref, R., Chen, R.T.: Comparison of microrings and microdisks for highspeed optical modulation in silicon photonics. Appl. Phys. Lett. 112(11), 111108 (2018)
[101] Feng, C., Ying, Z., Zhao, Z., Mital, R., Pan, D.Z., Chen, R.T.: Analysis of microresonator-based logic gate for high-speed optical computing in integrated photonics. IEEE J. Sel. Top. Quantum Electron. 26(2), 8302208 (2019)
[102] Ying, Z., Dhar, S., Zhao, Z., Feng, C., Mital, R., Chung, C., Pan, D.Z., Soref, R.A., Chen, R.T.: Electro-optic ripple-carry adder in integrated silicon photonics for optical computing. IEEE J. Sel. Top. Quantum Electron. 24(6), 7600310 (2018)
[103] Ying, Z., Wang, Z., Zhao, Z., Dhar, S., Pan, D.Z., Soref, R., Chen, R.T.: Silicon microdisk-based full adders for optical computing. Opt. Lett. 43(5), 983–986 (2018)
[104] Ying, Z., Feng, C., Zhao, Z., Dhar, S., Dalir, H., Gu, J., Cheng, Y., Soref, R., Pan, D.Z., Chen, R.T.: Electronic-photonic arithmetic logic unit for high-speed computing. Nat. Commun. 11(1), 2154 (2020)
[105] Bogaerts, W., Pérez, D., Capmany, J., Miller, D.A.B., Poon, J., Englund, D., Morichetti, F., Melloni, A.: Programmable photonic circuits. Nature 586(7828), 207–216 (2020)
[106] Soref, R., De Leonardis, F., Passaro, V.M.N.: Compact resonant 2 × 2 crossbar switch using three coupled waveguides with a central nanobeam. Opt. Express 29(6), 8751–8762 (2021)
[107] Cheng, Z., Dong, J., Zhang, X.: Ultracompact optical switch using a single semisymmetric Fano nanobeam cavity. Opt. Lett. 45(8), 2363–2366 (2020)
[108] Shamir, J.: Parallel optical logic operations on reversible networks. Opt. Commun. 291, 133–137 (2013)
[109] Miller, D.A.B.: Self-configuring universal linear optical component. Photon. Res. 1(1), 1–15 (2013)
[110] Annoni, A., Guglielmi, E., Carminati, M., Ferrari, G., Sampietro, M., Miller, D.A.B., Melloni, A., Morichetti, F.: Unscrambling light-automatically undoing strong mixing between modes. Light, Sci. Appl. 6(12), e17110 (2017)
[111] Zhou, H., Zhao, Y., Wang, X., Gao, D., Dong, J., Zhang, X.: Selfconfiguring and reconfigurable silicon photonic signal processor. ACS Photonics 7(3), 792–799 (2020)
[112] Zhou, H., Zhao, Y., Xu, G., Wang, X., Tan, Z., Dong, J., Zhang, X.: Chip-scale optical matrix computation for PageRank algorithm. IEEE J. Sel. Top. Quantum Electron. 26(2), 8300910 (2020)
[113] Xiang, S., Han, Y., Song, Z., Guo, X., Zhang, Y., Ren, Z., Wang, S., Ma, Y., Zou, W., Ma, B., Xu, S., Dong, J., Zhou, H., Ren, Q., Deng, T., Liu, Y., Han, G., Hao, Y.: A review: photonics devices, architectures, and algorithms for optical neural computing. J. Semicond. 42(2), 023105 (2021)
[114] Xu, S., Wang, J., Wang, R., Chen, J., Zou, W.: High-accuracy optical convolution unit architecture for convolutional neural networks by cascaded acousto-optical modulator arrays. Opt. Express 27(14), 19778–19787 (2019)
[115] Capmany, J., Pérez, D.: Programmable integrated photonics. Oxford University Press, Oxford (2020)
[116] Bai, B., Shu, H., Wang, X., Zou, W.: Towards silicon photonic neural networks for artificial intelligence. Sci. China Inf. Sci. 63(6), 160406 (2020)