[1] WALDMANN T, HOGG B I, Wohlfahrt-Mehrens M. Li plating as unwanted side reaction in commercial Li-ion cells–A review[J]. J Power Sources, 2018, 384: 107–124.
[2] VETTER J, NOVáK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. J Power Sources, 2005, 147(1/2): 269–281.
[3] SELIS L A, SEMINARIO J M. Dendrite formation in silicon anodes of lithium-ion batteries[J]. RSC adv, 2018, 8(10): 5255–5267.
[4] MEGAHED S, SCROSATI B. Lithium-ion rechargeable batteries[J].Journal of Power Sources, 1994, 51(1–2): 79–104.
[6] ARYANFAR A, BROOKS D J, COLUSSI A J, et al. Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries[J]. Phys Chem Chem Phys, 2014, 16(45):24965–24970.
[7] KIM W S,YOON W Y. Observation of dendritic growth on Li powder anode using optical cell[J]. Electroch Acta, 2004, 50: 541–545.
[8] HARRIS S J, TIMMONS A, BAKER D R, et al. Direct in situ measurements of Li transport in Li-ion battery negative electrodes[J].Chem Phys Lett, 2010, 485: 265–274.
[9] KIM W S,YOON W Y. Observation of dendritic growth on Li powder anode using optical cell[J]. Electroch Acta, 2004, 50: 541–545.
[10] FEAR C, ADHIKARY T, CARTER R, et al. In operando detection of the onset and mapping of lithium plating regimes during fast charging of lithium-ion batteries[J]. ACS Appl Mater Interf, 2020, 12(27):30438–30448.
[11] KAZYAK E, GARCIA-MENDEZ R, LEPAGE W S, et al. Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility[J]. Matter, 2020, 2(4):1025–1048.
[12] LI W, YAO H, YAN K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J].nature communic, 2015, 6(1): 1–8.
[13] SANO H, SAKAEBE H, MATSUMOTO H. Observation of electrodeposited lithium by optical microscope in room temperature ionic liquid-based electrolyte[J]. J Power Sources, 2011, 196:6663–6669.
[14] LIU K, BAI P, BAZANT M Z, et al. Soft non-porous separator and its effectiveness in stabilizing Li metal anode cycling at 10 mA/cm2 observed in-situ in a capillary cell[J]. J Mater Chem A, 2017, 5(9):4300–4307.
[15] GIREAUD L, GRUGEON S, LARUELLE S, et al. Lithium metal stripping/plating mechanisms studies: A metallurgical approach[J]. Electrochem Commun, 2006, 8(10): 1639–1649.
[16] GOLOZAR M, HOVINGTON P, PAOLELLA A, et al. In situ scanning electron microscopy detection of carbide nature of dendrites in Li–polymer batteries[J]. Nano Lett, 2018, 18(12): 7583–7589.
[17] LIU X H, HUANG J Y. In situ TEM electrochemistry of anode materials in lithium ion batteries[J]. Energy Environm Sci, 2011, 4(10):3844–3860.
[18] ORSINI F, DU PASQUIER A, BEAUDOIN B, et al. In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries[J]. J Power Sources, 1998, 76(1): 19–29.
[19] UHLMANN C, ILLIG J, ENDER M, et al. In situ detection of lithium metal plating on graphite in experimental cells[J]. J Power Sources,2015, 279: 428–438.
[20] LEE J Z, WYNN T A, SCHROEDER M A, et al. Cryogenic focused ion beam characterization of lithium metal anodes[J]. ACS Energy Lett,2019, 4(2): 489–493.
[21] LI Y, LI Y, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy[J]. Science, 2017,358(6362): 506–510.
[22] ZACHMAN M J, TU Z, CHOUDHURY S, et al. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345–349.
[23] HO A S, PARKINSON D Y, FINEGAN D P, et al. 3D detection of lithiation and lithium plating in graphite anodes during fast charging[J]. ACS Nano, 2021, 10.1021/acsnano.1c02942.
[24] EBNER M, MARONE F, STAMPANONI M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries[J]. Science, 2013, 342(6159): 716–720.
[25] YU S H, HUANG X, BROCK J D, et al. Regulating key variables and visualizing lithium dendrite growth: an operando X-ray study[J]. J Am Chem Soc, 2019, 141(21): 8441–8449.
[26] KITTA M, SANO H. Real-time observation of Li deposition on a li electrode with operand atomic force microscopy and surface mechanical imaging[J]. Langmuir, 2017, 33(8): 1861–1866.
[27] LI Q, PAN H, LI W, et al. Homogeneous interface conductivity for lithium dendrite-free anode[J]. ACS Energy Lett, 2018, 3(9):2259–2266.
[28] ZHANG L, YANG T, DU C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up[J]. Nat Nanotech, 2020, 15(2):94–98.
[29] CHENG X, XIAN F, HU Z, et al. Fluorescence probing of active lithium distribution in lithium metal anodes[J]. Angew Chem Intern Ed,2019, 58(18): 5936–5940.
[30] SMART M C, RATNAKUMAR B V. Effects of Electrolyte Composition on Lithium Plating in Lithium-Ion Cells[J]. J Electroch Soc, 2011, 158(4): A379.
[31] PETZL M, DANZER M A. Nondestructive detection, characterization,and quantification of lithium plating in commercial lithium-ion batteries[J]. J Power Sources, 2014, 254: 80–87.
[32] VON LUEDERS C, ZINTH V, ERHARD S V, et al. Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction[J]. J Power Sources, 2017, 342(28): 17–23.
[33] BURNS, J C, STEVENS D A, DAHN J R. In-situ detection of lithium plating using high precision coulometry[J]. J Electroch Soc, 2015,162(6): A959.
[34] SMITH A J, BURNS J C, DAHN J R. A high precision study of the Coulombic efficiency of Li-ion batteries[J]. Electroch Solid State Lett,2010, 13(12): A177.
[36] DENSMORE A, HANIF M. Determining battery SoC using electrochemical impedance spectroscopy and the extreme learning machine[C]//2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC). IEEE, 2015: 1–7.
[37] GALEOTTI M, CINà L, GIAMMANCO C, et al. Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy[J]. Energy,2015, 89: 678–686.
[39] KOLETI U R, DINH T Q, MARCO J. A new on-line method for lithium plating detection in lithium-ion batteries[J]. J Power Sources,2020, 451(Mar.1): 227798.1–227798.12.
[40] SCHINDLER S, BAUER M, PETZL M, et al. Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells[J].J Power Sources, 2016, 304(FEB.1): 170–180.
[41] PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery–A low-temperature aging study[J]. J Power Sources, 2015, 275: 799–807.
[42] HERNANDEZ-MAYA R, ROSAS O, SAUNDERS J, et al. Dynamic characterization of dendrite deposition and growth in Li-surface by electrochemical impedance spectroscopy[J]. J Electrochem Soc, 2015,162(4): A687.
[43] SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nat Energy, 2019,4(5): 383–391.
[44] YI M, JIANG F, ZHAO G, et al. Detection of lithium plating based on the distribution of relaxation times[C].2021 IEEE 4th International Electrical and Energy Conference (CIEEC). IEEE, 2021: 1–5.
[45] CHEN BOR-RONG, KUNZ M. Ross, TANIM TANVIR R., DUFEK ERIC J. Early Detection of Lithium Plating in Lithium Ion Batteries:Using Multiple Physics-Based Electrochemical Signatures to Construct a Machine Learning Framework[C]//ECS Meeting Abstracts. IOP Publishing, 2021(5): 274.
[46] CHEN B R, KUNZ M R, TANIM T R, et al. A machine learning framework for early detection of lithium plating combining multiple physics-based electrochemical signatures[J]. Cell Reports Phys Sci,2021, 2(3): 100352.
[47] LI X, JING H, FAGHRI A. Modeling study of a Li–O2 battery with an active cathode[J]. Energy, 2015, 81: 489–500.
[48] TIPPMANN S, WALPER D, BALBOA L, et al. Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior[J]. J Power Sources,2014, 252(apr.15): 305–316.
[49] ARORA P, DOYLE M, WHITE R E. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes[J]. J Electrochem Soc, 1999, 146(10):3543.
[50] PRINGSHEIM A. Two-Dimensional Modeling of Lithium Deposition during Cell Charging[J]. Univers De Barcelona, 2009, 51(2): 131–157.
[51] LEGRAND N, KNOSP B, DESPREZ P, et al. Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling[J]. J Power Sources, 2014, 245: 208–216.
[52] FLEISCHHAMMER M, WALDMANN T, BISLE G, et al. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries[J]. J Power Sources, 2015, 274: 432–439.
[53] WALDMANN T, WOHLFAHRT-MEHRENS M. Effects of rest time after Li plating on safety behavior—ARC tests with commercial high-energy 18650 Li-ion cells[J]. Electrochem Acta, 2017, 230: 454–460.
[54] DOWNIE L E, KRAUSE L J, BURNS J C, et al. In Situ detection of lithium plating on graphite electrodes by electrochemical calorimetry[J]. J Electrochem Soc, 2013, 160(4): A588–A594.
[55] FANG C, LI J, ZHANG M, et al. Quantifying inactive lithium in lithium metal batteries[J]. Nature, 2019, 572(7770): 511–515.
[56] WANDT J, JAKES P, GRANWEHR J, et al. Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries[J]. Mater Today, 2018, 21(3): 231–240.
[57] CHEVALLIER F, POLI F, MONTIGNY B, et al. In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite: second cycle analysis[J]. Carbon, 2013, 61:140–153.
[58] KEY B, BHATTACHARYYA R, MORCRETTE M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. J Am Chem Soc, 2009, 131(26): 9239–9249.
[59] HSIEH Y C, LEI?ING M, NOWAK S, et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy[J]. Cell Reports Phys Sci, 2020, 1(8): 100139.
[60] LESKES M, KIM G, LIU T, et al. Surface-sensitive NMR detection of the solid electrolyte interphase layer on reduced graphene oxide[J]. J Phys Chem Lett, 2017, 8(5): 1078–1085.
[61] JIN Y, KNEUSELS N J H, MAGUSIN P C M M, et al. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate[J]. J Am Chem Soc, 2017, 139(42): 14992–15004.
[62] JIN Y, KNEUSELS N J H, MARBELLA L E, et al. Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy[J]. J Am Chem Soc, 2018, 140(31): 9854–9867.
[63] DENG Z, HUANG Z, SHEN Y, et al. Ultrasonic scanning to observe wetting and “Unwetting” in Li-ion pouch cells[J]. Joule, 2020, 4(9):2017–2029.
[64] LIU Q Q, XIONG D J, PETIBON R, et al. Gas evolution during unwanted lithium plating in Li-ion cells with EC-based or EC-free electrolytes[J]. J Electrochem Soc, 2016, 163(14): A3010.
[65] ZINTH V, VON LüDERS C, HOFMANN M, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction[J]. J Power Sources, 2014, 271: 152–159.