[1] Y Li, CJ Lin, KQ Li, C Chi, BL Huang. Nanoparticle-on-mirror metamaterials for full-spectrum selective solar energy harvesting. Nano Lett, 22, 5659-5666(2022).
[2] Y Kameya, K Hanamura. Enhancement of solar radiation absorption using nanoparticle suspension. Solar Energy, 85, 299-307(2011).
[3] M Zhang, YJ Lin, TJ Mullen, WF Lin, LD Sun et al. Improving hematite's solar water splitting efficiency by incorporating rare-earth upconversion nanomaterials. J Phys Chem Lett, 3, 3188-3192(2012).
[4] DY Ma, YL Shen, TT Su, J Zhao, NU Rahman et al. Performance enhancement in up-conversion nanoparticle-embedded perovskite solar cells by harvesting near-infrared sunlight. Mater Chem Front, 3, 2058-2065(2019).
[5] MZ Zuo, WR Qian, TH Li, XY Hu, JL Jiang et al. Full-color tunable fluorescent and chemiluminescent supramolecular nanoparticles for anti-counterfeiting inks. ACS Appl Mater Interfaces, 10, 39214-39221(2018).
[6] D Przybylska, T Grzyb, A Erdman, K Olejnik, A Szczeszak. Anti-counterfeiting system based on luminescent varnish enriched by NIR- excited nanoparticles for paper security. Sci Rep, 12, 19388(2022).
[7] P Kumar, J Dwivedi, BK Gupta. Highly luminescent dual mode rare-earth nanorod assisted multi-stage excitable security ink for anti-counterfeiting applications. J Mater Chem C, 2, 10468-10475(2014).
[8] Y Deng, A Ediriwickrema, F Yang, J Lewis, M Girardi et al. A sunblock based on bioadhesive nanoparticles. Nat Mater, 14, 1278-1285(2015).
[9] J Huang, YR He, L Wang, YM Huang, BC Jiang. Bifunctional Au@TiO2 core-shell nanoparticle films for clean water generation by photocatalysis and solar evaporation. Energy Convers Manag, 132, 452-459(2017).
[10] D Jaque, L Martínez Maestro, B del Rosal, P Haro-Gonzalez, A Benayas et al. Nanoparticles for photothermal therapies. Nanoscale, 6, 9494-9530(2014).
[11] DS Lu, JR Retama, R Marin, MI Marqués, OG Calderón et al. Thermoresponsive polymeric nanolenses magnify the thermal sensitivity of single upconverting nanoparticles. Small, 18, 2202452(2022).
[12] G López-Peña, K Hamraoui, K Horchani-Naifer, C Gerke, DH Ortgies et al. Lanthanide doped nanoheaters with reliable and absolute temperature feedback. Phys B Condens Matter, 631, 413652(2022).
[13] YL Shen, J Lifante, I Zabala-Gutierrez, M de la Fuente-Fernández, M Granado et al. Reliable and remote monitoring of absolute temperature during liver inflammation via luminescence-lifetime-based nanothermometry. Adv Mater, 34, 2107764(2022).
[14] P Rodríguez-Sevilla, YH Zhang, P Haro-González, F Sanz-Rodríguez, F Jaque et al. Thermal scanning at the cellular level by an optically trapped upconverting fluorescent particle. Adv Mater, 28, 2421-2426(2016).
[15] P Rodríguez-Sevilla, YH Zhang, N de Sousa, MI Marqués, F Sanz-Rodríguez et al. Optical torques on upconverting particles for intracellular microrheometry. Nano Lett, 16, 8005-8014(2016).
[16] TV Esipova, XC Ye, JE Collins, S Sakadžić, ET Mandeville et al. Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. Proc Natl Acad Sci USA, 109, 20826-20831(2012).
[17] K Suresh, A Bankapur, S Chidangil, H Madhyastha, K Sa-kai et al. A broadband optical pH sensor using upconversion luminescence. J Mater Chem C, 9, 8606-8614(2021).
[18] RV Benjaminsen, HH Sun, JR Henriksen, NM Christensen, K Almdal et al. Evaluating nanoparticle sensor design for intracellular pH measurements. ACS Nano, 5, 5864-5873(2011).
[19] R Ali, SM Saleh, RJ Meier, HA Azab, II Abdelgawad et al. Upconverting nanoparticle based optical sensor for carbon dioxide. Sens Actuators B Chem, 150, 126-131(2010).
[20] M Kameda, H Seki, T Makoshi, Y Amao, K Nakakita. A fast-response pressure sensor based on a dye-adsorbed silica nanoparticle film. Sens Actuators B Chem, 171–172, 343-349(2012).
[21] MA Schmidt, DY Lei, L Wondraczek, V Nazabal, SA Maier. Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nat Commun, 3, 1108(2012).
[22] G Huang, YT Liu, DJ Wang, Y Zhu, SH Wen et al. Upconversion nanoparticles for super-resolution quantification of single small extracellular vesicles. eLight, 2, 20(2022).
[23] P Rodríguez-Sevilla, H Rodríguez-Rodríguez, M Pedroni, A Speghini, M Bettinelli et al. Assessing single upconverting nanoparticle luminescence by optical tweezers. Nano Lett, 15, 5068-5074(2015).
[24] L Labrador-Páez, M Pedroni, A Speghini, J García-Solé, P Haro-González et al. Reliability of rare-earth-doped infrared luminescent nanothermometers. Nanoscale, 10, 22319-22328(2018).
[25] S Katano, M Hotsuki, Y Uehara. Creation and luminescence of a single silver nanoparticle on Si(111) investigated by scanning tunneling microscopy. J Phys Chem C, 120, 28575-28582(2016).
[26] F Silly, AO Gusev, F Charra, A Taleb, MP Pileni. Scanning tunneling microscopy-controlled dynamic switching of single nanoparticle luminescence at room temperature. Appl Phys Lett, 79, 4013-4015(2001).
[27] S Schietinger, T Aichele, HQ Wang, T Nann, O Benson. Plasmon-enhanced upconversion in single NaYF4: Yb3+/Er3+ codoped nanocrystals. Nano Lett, 10, 134-138(2010).
[28] LM Tong, ZP Li, T Zhu, HX Xu, ZF Liu. Single gold-nanoparticle-enhanced raman scattering of individual single-walled carbon nanotubes via atomic force microscope manipulation. J Phys Chem C, 112, 7119-7123(2008).
[29] D Ratchford, F Shafiei, S Kim, SK Gray, XQ Li. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle. Nano Lett, 11, 1049-1054(2011).
[30] DS Lu, L Labrador-Páez, E Ortiz-Rivero, P Frades, MA Antoniak et al. Exploring single-nanoparticle dynamics at high temperature by optical tweezers. Nano Lett, 20, 8024-8031(2020).
[31] A Ashkin. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett, 24, 156-159(1970).
[32] M Dienerowitz, M Mazilu, K Dholakia. Optical manipulation of nanoparticles: a review. J Nanophotonics, 2, 021875(2008).
[33] P Rodríguez-Sevilla, K Prorok, A Bednarkiewicz, MI Marqués, A García-Martín et al. Optical forces at the nanoscale: size and electrostatic effects. Nano Lett, 18, 602-609(2018).
[34] H Rodríguez-Rodríguez, PR Sevilla, EM Rodríguez, DH Ortgies, M Pedroni et al. Enhancing optical forces on fluorescent up-converting nanoparticles by surface charge tailoring. Small, 11, 1555-1561(2015).
[35] J Berthelot, SS Aćimović, ML Juan, MP Kreuzer, J Renger et al. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat Nanotechnol, 9, 295-299(2014).
[36] AN Grigorenko, NW Roberts, MR Dickinson, Y Zhang. Nanometric optical tweezers based on nanostructured substrates. Nat Photonics, 2, 365-370(2008).
[37] X Han, VG Truong, PS Thomas, SN Chormaic. Sequential trapping of single nanoparticles using a gold plasmonic nanohole array. Photonics Res, 6, 981-986(2018).
[38] S Mandal, X Serey, D Erickson. Nanomanipulation using silicon photonic crystal resonators. Nano Lett, 10, 99-104(2010).
[39] HT Wang, X Wu, DY Shen. Localized optical manipulation in optical ring resonators. Opt Express, 23, 27650-27660(2015).
[40] DS Lu, M Pedroni, L Labrador-Páez, MI Marqués, D Jaque et al. Nanojet trapping of a single sub-10 nm upconverting nanoparticle in the full liquid water temperature range. Small, 17, 2006764(2021).
[41] YC Li, HB Xin, HX Lei, LL Liu, YZ Li et al. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light Sci Appl, 5, e16176(2016).
[42] ZZ Chen, ZW Cai, WB Liu, ZJ Yan. Optical trapping and manipulation for single-particle spectroscopy and microscopy. J Chem Phys, 157, 050901(2022).
[43] K Svoboda, SM Block. Optical trapping of metallic Rayleigh particles. Opt Lett, 19, 930-932(1994).
[44] A Lehmuskero, P Johansson, H Rubinsztein-Dunlop, LM Tong, M Kall. Laser trapping of colloidal metal nanoparticles. ACS Nano, 9, 3453-3469(2015).
[45] DS Lu, F Gámez, P Haro-González. Temperature effects on optical trapping stability. Micromachines, 12, 954(2021).
[46] L Shao, M Käll. Light‐driven rotation of plasmonic nanomotors. Adv Funct Mater, 28, 1706272(2018).
[47] YF Yuan, YN Lin, BB Gu, N Panwar, SC Tjin et al. Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives. Coord Chem Rev, 339, 138-152(2017).
[48] A Ohlinger, S Nedev, AA Lutich, J Feldmann. Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. Nano Lett, 11, 1770-1774(2011).
[49] D Andrén, L Shao, NO Länk, SS Aćimović, P Johansson et al. Probing photothermal effects on optically trapped gold nanorods by simultaneous plasmon spectroscopy and brownian dynamics analysis. ACS Nano, 11, 10053-10061(2017).
[50] A Andres-Arroyo, F Wang, WJ Toe, P Reece. Intrinsic heating in optically trapped Au nanoparticles measured by dark-field spectroscopy. Biomed Opt Express, 6, 3646-3654(2015).
[51] JA Rodrigo, T Alieva. Polymorphic beams and Nature inspired circuits for optical current. Sci Rep, 6, 35341(2016).
[52] MJ Guffey, NF Scherer. All-optical patterning of Au nanoparticles on surfaces using optical traps. Nano Lett, 10, 4302-4308(2010).
[53] L Ling, L Huang, JX Fu, HL Guo, JF Li et al. The properties of gold nanospheres studied with dark field optical trapping. Opt Express, 21, 6618-6624(2013).
[54] F Yang, NN Yang, XY Huo, SY Xu. Thermal sensing in fluid at the micro-nano-scales. Biomicrofluidics, 12, 041501(2018).
[55] B del Rosal, E Ximendes, U Rocha, D Jaque. In vivo luminescence nanothermometry: from materials to applications. Adv Opt Mater, 5, 1600508(2017).
[56] HY Zhou, M Sharma, O Berezin, D Zuckerman, MY Berezin. Nanothermometry: from microscopy to thermal treatments. ChemPhysChem, 17, 27-36(2016).
[57] K Setoura, Y Okada, D Werner, S Hashimoto. Observation of nanoscale cooling effects by substrates and the surrounding media for single gold nanoparticles under CW-laser illumination. ACS Nano, 7, 7874-7885(2013).
[58] F Hajizadeh, L Shao, D Andrén, P Johansson, H Rubinsztein-Dunlop et al. Brownian fluctuations of an optically rotated nanorod. Optica, 4, 746-751(2017).
[59] N Zohar, L Chuntonov, G Haran. The simplest plasmonic molecules: metal nanoparticle dimers and trimers. J Photochem Photobiol C Photochem Rev, 21, 26-39(2014).
[60] H Kermani, A Rohrbach. Orientation-control of two plasmonically coupled nanoparticles in an optical trap. ACS Photonics, 5, 4660-4667(2018).
[61] M Blattmann, A Rohrbach. Plasmonic coupling dynamics of silver nanoparticles in an optical trap. Nano Lett, 15, 7816-7821(2015).
[62] JA Rodrigo, M Angulo, T Alieva. All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories. Photonics Res, 9, 1-12(2021).
[63] C Sönnichsen, BM Reinhard, J Liphardt, AP Alivisatos. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol, 23, 741-745(2005).
[64] F Han, T Armstrong, A Andres-Arroyo, D Bennett, A Soeriyadi et al. Optical tweezers-based characterisation of gold core–satellite plasmonic nano-assemblies incorporating thermo-responsive polymers. Nanoscale, 12, 1680-1687(2020).
[65] K König. Multiphoton microscopy in life sciences. J Microsc, 200, 83-104(2000).
[66] F Vetrone, R Naccache, A Zamarrón, AJ de la Fuente, F Sanz-Rodríguez et al. Temperature sensing using fluorescent nanothermometers. ACS Nano, 4, 3254-3258(2010).
[67] P Haro-González, B del Rosal, LM Maestro, EM Rodríguez, R Naccache et al. Optical trapping of NaYF4: Er3+, Yb3+ upconverting fluorescent nanoparticles. Nanoscale, 5, 12192-12199(2013).
[68] XC Shan, F Wang, DJ Wang, SH Wen, CH Chen et al. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nat Nanotechnol, 16, 531-537(2021).
[69] E Cantelar, F Cussó. Dynamics of the Yb3+ to Er3+ energy transfer in LiNbO3. Appl Phys B, 69, 29-33(1999).
[70] BS Cao, YY He, ZQ Feng, YS Li, B Dong. Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo: Yb2Ti2O7 nanophosphor. Sens Actuators B Chem, 159, 8-11(2011).
[71] J Petit, B Viana, P Goldner. Internal temperature measurement of an ytterbium doped material under laser operation. Opt Express, 19, 1138-1146(2011).
[72] M Quintanilla, E Cantelar, F Cussó, M Villegas, AC Caballero. Temperature sensing with up-converting submicron-sized LiNbO3: Er3+/Yb3+ particles. Appl Phys Express, 4, 022601(2011).
[73] MARC Alencar, GS Maciel, CBd Araújo, A Patra. Er3+-doped BaTiO3 nanocrystals for thermometry: influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Appl Phys Lett, 84, 4753-4755(2004).
[74] P Haro-González, IR Martín, LL Martín, SF León-Luis, C Pérez-Rodríguez et al. Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors. Opt Mater, 33, 742-745(2011).
[75] ZP Cai, HY Xu. Point temperature sensor based on green upconversion emission in an Er: ZBLALiP microsphere. Sens Actuators A Phys, 108, 187-192(2003).
[76] F Vetrone, R Naccache, AJ de la Fuente, F Sanz-Rodríguez, A Blazquez-Castro et al. Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles. Nanoscale, 2, 495-498(2010).
[77] LM Maestro, EM Rodríguez, F Vetrone, R Naccache, H Loro et al. Nanoparticles for highly efficient multiphoton fluorescence bioimaging. Opt Express, 18, 23544-23553(2010).
[78] DK Chatterjee, AJ Rufaihah, Y Zhang. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials, 29, 937-943(2008).
[79] M Wang, CC Mi, WX Wang, CH Liu, YF Wu et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles. ACS Nano, 3, 1580-1586(2009).
[80] S Drobczyński, K Prorok, K Tamarov, K Duś-Szachniewicz, VP Lehto et al. Toward controlled photothermal treatment of single cell: optically induced heating and remote temperature monitoring in vitro through double wavelength optical tweezers. ACS Photonics, 4, 1993-2002(2017).
[81] TY Liu, XG Liu, DR Spring, XH Qian, JN Cui et al. Quantitatively mapping cellular viscosity with detailed organelle information via a designed PET fluorescent probe. Sci Rep, 4, 5418(2014).
[82] D Wirtz. Particle-tracking microrheology of living cells: principles and applications. Ann Rev Biophys, 38, 301-326(2009).
[83] J Lammerding, RT Lee. The nuclear membrane and mechanotransduction: impaired nuclear mechanics and mechanotransduction in lamin A/C deficient cells. Novartis Found Symp, 264, 264-273(2005).
[84] J Lammerding, PC Schulze, T Takahashi, S Kozlov, T Sullivan et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest, 113, 370-378(2004).
[85] JSH Lee, MI Chang, Y Tseng, D Wirtz. Cdc42 mediates nucleus movement and MTOC polarization in Swiss 3T3 fibroblasts under mechanical shear stress. Mol Biol Cell, 16, 871-880(2005).
[86] AA Minin, AV Kulik, FK Gyoeva, Y Li, G Goshima et al. Regulation of mitochondria distribution by RhoA and formins. J Cell Sci, 119, 659-670(2006).
[87] MK Kuimova. Mapping viscosity in cells using molecular rotors. Phys Chem Chem Phys, 14, 12671-12686(2012).
[88] O Nadiv, M Shinitzky, H Manu, D Hecht, CT Jr Roberts et al. Elevated protein tyrosine phosphatase activity and increased membrane viscosity are associated with impaired activation of the insulin receptor kinase in old rats. Biochem J, 298, 443-450(1994).
[89] G Deliconstantinos, V Villiotou, JC Stavrides. Modulation of particulate nitric oxide synthase activity and peroxynitrite synthesis in cholesterol enriched endothelial cell membranes. Biochem Pharmacol, 49, 1589-1600(1995).
[90] GS Zubenko, U Kopp, T Seto, LL Firestone. Platelet membrane fluidity individuals at risk for Alzheimer's disease: a comparison of results from fluorescence spectroscopy and electron spin resonance spectroscopy. Psychopharmacology, 145, 175-180(1999).
[91] P Chen, M Song, E Wu, BT Wu, JJ Zhou et al. Polarization modulated upconversion luminescence: single particle vs. few-particle aggregates. Nanoscale, 7, 6462-6466(2015).
[92] P Rodríguez-Sevilla, L Labrador-Páez, D Wawrzyńczyk, M Nyk, M Samoć et al. Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy. Nanoscale, 8, 300-308(2016).
[93] Z- Lyu, H Dong, XF Yang, LD Sun, CH Yan. Highly polarized upconversion emissions from lanthanide-doped LiYF4 crystals as spatial orientation indicators. J Phys Chem Lett, 12, 11288-11294(2021).
[94] KK Green, J Wirth, SF Lim. Nanoplasmonic upconverting nanoparticles as orientation sensors for single particle microscopy. Sci Rep, 7, 762(2017).
[95] J Kim, R Chacón, ZJ Wang, E Larquet, K Lahlil et al. Measuring 3D orientation of nanocrystals via polarized luminescence of rare-earth dopants. Nat Commun, 12, 1943(2021).
[96] S Chakraborty, S Nandi, K Bhattacharyya, S Mukherjee. Probing viscosity of co-polymer hydrogel and hela cell using fluorescent gold nanoclusters: fluorescence correlation spectroscopy and anisotropy decay. ChemPhysChem, 21, 406-414(2020).
[97] I Ramazanova, M Suslov, G Sibgatullina, K Petrov, S Fedorenko et al. Determination of the viscosity of the cytoplasm of M-HeLa cells using fluorescent magnetic nanoparticles and an electromagnetic needle. PREPRINT (Version 1) available at Research Square.
[98] M Schäferling. Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 8, 378-413(2016).
[99] J Liu, M Zheng, ZJ Xiong, ZY Li. 3D dynamic motion of a dielectric micro-sphere within optical tweezers. Opto-Electron Adv, 4, 200015(2021).
[100] K Kim, J Yoon, YK Park. Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography. Optica, 2, 343-346(2015).
[101] R Bresolí-Obach, T Kudo, B Louis, YC Chang, IG Scheblykin et al. Resonantly enhanced optical trapping of single dye-doped particles at an interface. ACS Photonics, 8, 1832-1839(2021).
[102] B Louis, CH Huang, R Camacho, IG Scheblykin, T Sugiyama et al. Unravelling 3D dynamics and hydrodynamics during incorporation of dielectric particles to an optical trapping site. ACS Nano, 17, 3797-3808(2023).
[103] S Ito, M Mitsuishi, K Setoura, M Tamura, T Iida et al. Mesoscopic motion of optically trapped particle synchronized with photochromic reactions of diarylethene derivatives. J Phys Chem Lett, 9, 2659-2664(2018).
[104] C Hosokawa, T Tsuji, T Kishimoto, T Okubo, SN Kudoh et al. Convection dynamics forced by optical trapping with a focused laser beam. J Phys Chem C, 124, 8323-8333(2020).
[105] EL Florin, JKH Horber, EHK Stelzer. High-resolution axial and lateral position sensing using two-photon excitation of fluorophores by a continuous-wave Nd: YAG laser. Appl Phys Lett, 69, 446-448(1996).
[106] EL Florin, A Pralle, JKH Horber, EHK Stelzer. Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. J Struct Biol, 119, 202-211(1997).
[107] MJ Lang, PM Fordyce, SM Block. Combined optical trapping and single-molecule fluorescence. J Biol, 2, 6(2003).
[108] MJ Lang, PM Fordyce, AM Engh, KC Neuman, SM Block. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat Methods, 1, 133-139(2004).
[109] CY Zhang, HC Yeh, MT Kuroki, TH Wang. Single-quantum-dot-based DNA nanosensor. Nat Mater, 4, 826-831(2005).
[110] LJ Wang, ML Luo, QY Zhang, B Tang, CY Zhang. Single quantum dot-based nanosensor for rapid and sensitive detection of terminal deoxynucleotidyl transferase. Chem Commun, 53, 11016-11019(2017).
[111] Y Zhang, CY Zhang. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Anal Chem, 84, 224-231(2012).
[112] X Michalet, FF Pinaud, LA Bentolila, JM Tsay, S Doose et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538-544(2005).
[113] LY Pan, A Ishikawa, N Tamai. Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence. Phys Rev B, 75, 161305(2007).
[114] L Jauffred, AC Richardson, LB Oddershede. Three-dimensional optical control of individual quantum dots. Nano Lett, 8, 3376-3380(2008).
[115] L Jauffred, LB Oddershede. Two-photon quantum dot excitation during optical trapping. Nano Lett, 10, 1927-1930(2010).
[116] L Jauffred, A Kyrsting, EC Arnspang, SNS Reihani, LB Oddershede. Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot. Nanoscale, 6, 6997-7003(2014).
[117] Z Xu, KB Crozier. All-dielectric nanotweezers for trapping and observation of a single quantum dot. Opt Express, 27, 4034-4045(2019).
[118] WY Chiang, T Okuhata, A Usman, N Tamai, H Masuhara. Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses. J Phys Chem B, 118, 14010-14016(2014).
[119] CR Head, E Kammann, M Zanella, L Manna, PG Lagoudakis. Spinningnanorods - active optical manipulation of semiconductor nanorods using polarised light. Nanoscale, 4, 3693-3697(2012).
[120] R Agarwal, K Ladavac, Y Roichman, GH Yu, CM Lieber et al. Manipulation and assembly of nanowires with holographic optical traps. Opt Express, 13, 8906-8912(2005).
[121] P Pinapati, JP Joby, S Cherukulappurath. Graphene oxide based two-dimensional optical tweezers for low power trapping of quantum dots and E. coli bacteria. ACS Appl Nano Mater, 3, 5107-5115(2020).
[122] H Rodríguez-Rodríguez, M Acebrón, BH Juárez, JR Arias-Gonzalez. Luminescence dynamics of silica-encapsulated quantum dots during optical trapping. J Phys Chem C, 121, 10124-10130(2017).
[123] PJ Pauzauskie, A Radenovic, E Trepagnier, H Shroff, PD Yang et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nat Mater, 5, 97-101(2006).
[124] Y Nakayama, PJ Pauzauskie, A Radenovic, RM Onorato, RJ Saykally et al. Tunable nanowire nonlinear optical probe. Nature, 447, 1098-1101(2007).
[125] H Rodríguez-Rodríguez, M Acebrón, FJ Iborra, JR Arias-Gonzalez, BH Juárez. Photoluminescence activation of organic dyes via optically trapped quantum dots. ACS Nano, 13, 7223-7230(2019).
[126] JM Taylor, P Cappellaro, L Childress, L Jiang, D Budker et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat Phys, 4, 810-816(2008).
[127] G Balasubramanian, IY Chan, R Kolesov, M Al-Hmoud, J Tisler et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature, 455, 648-651(2008).
[128] F Dolde, H Fedder, MW Doherty, T Nöbauer, F Rempp et al. Electric-field sensing using single diamond spins. Nat Phys, 7, 459-463(2011).
[129] DM Toyli, DJ Christle, A Alkauskas, BB Buckley, CG Van de Walle et al. Measurement and control of single nitrogen-vacancy center spins above 600 K. Phys Rev X, 2, 031001(2012).
[130] SJ Yu, MW Kang, HC Chang, KM Chen, YC Yu. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J Am Chem Soc, 127, 17604-17605(2005).
[131] KK Liu, CL Cheng, CC Chang, JI Chao. Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology, 18, 325102(2007).
[132] LP McGuinness, Y Yan, A Stacey, DA Simpson, LT Hall et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat Nanotechnol, 6, 358-363(2011).
[133] VR Horowitz, BJ Alemán, DJ Christle, AN Cleland, DD Awschalom. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds. Proc Natl Acad Sci USA, 109, 13493-13497(2012).
[134] M Geiselmann, ML Juan, J Renger, JM Say, LJ Brown et al. Three-dimensional optical manipulation of a single electron spin. Nat Nanotechnol, 8, 175-179(2013).
[135] TL Wu, XX Chen, ZY Gong, JH Yan, JH Guo et al. Intracellular thermal probing using aggregated fluorescent nanodiamonds. Adv Sci, 9, 2103354(2022).
[136] D Chrétien, P Bénit, HH Ha, S Keipert, R El-Khoury et al. Mitochondria are physiologically maintained at close to 50 °C. PLoS Biol, 16, e2003992(2018).
[137] BJ Roxworthy, KC Toussaint. Optical trapping with π-phase cylindrical vector beams. New J Phys, 12, 073012(2010).
[138] L Huang, HL Guo, JF Li, L Ling, BH Feng et al. Optical trapping of gold nanoparticles by cylindrical vector beam. Opt Lett, 37, 1694-1696(2012).
[139] H Zhang, YJ Li, IA Ivanov, YQ Qu, Y Huang et al. Plasmonic modulation of the upconversion fluorescence in NaYF4: Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew Chem Int Ed, 49, 2865-2868(2010).
[140] M Fujii, T Nakano, K Imakita, S Hayashi. Upconversion luminescence of er and Yb codoped NaYF4 nanoparticles with metal shells. J Phys Chem C, 117, 1113-1120(2013).
[141] YL Shen, J Lifante, N Fernández, D Jaque, E Ximendes. In vivo spectral distortions of infrared luminescent nanothermometers compromise their reliability. ACS Nano, 14, 4122-4133(2020).
[142] L von Chamier, RF Laine, J Jukkala, C Spahn, D Krentzel et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun, 12, 2276(2021).
[143] MS Zhu, J Zhuang, Z Li, QQ Liu, RP Zhao et al. Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures. Nat Nanotechnol, 18, 657-666(2023).