• Matter and Radiation at Extremes
  • Vol. 6, Issue 2, 020301 (2021)
S. Yu. Gus’kov1, P. A. Kuchugov1、2、a), and G. A. Vergunova1
Author Affiliations
  • 1P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
  • 2Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Moscow, Russia
  • show less
    DOI: 10.1063/5.0026002 Cite this Article
    S. Yu. Gus’kov, P. A. Kuchugov, G. A. Vergunova. Extreme matter compression caused by radiation cooling effect in gigabar shock wave driven by laser-accelerated fast electrons[J]. Matter and Radiation at Extremes, 2021, 6(2): 020301 Copy Citation Text show less
    References

    [1] X. Ribeyre, J.-L. Feugeas, S. Gus’kov, P. Nicolaï, M. Touati, V. Tikhonchuk. Ablation pressure driven by an energetic electron beam in a dense plasma. Phys. Rev. Lett., 109, 255004(2012).

    [2] S. Gus’kov, P. Nicolaï, J.-L. Feugeas, X. Ribeyre, V. T. Tikhonchuk. Dense plasma heating and Gbar shock formation by a high intensity flux of energetic electrons. Phys. Plasmas, 20, 062705(2013).

    [3] S. Y. Gus’kov. On the possibility of laboratory shock wave studies of the equation of state of a material at gigabar pressures with beams of laser-accelerated particles. JETP Lett., 100, 71-74(2014).

    [4] N. C. Holmes, R. Cauble, D. W. Phillion, J. D. Kilkenny, R. W. Lee, T. J. Hoover. Demonstration of 0.75 Gbar planar shocks in x-ray driven colliding foils. Phys. Rev. Lett., 70, 2102-2105(1993).

    [5] Y. Arikawa, M. Murakami, J. W. Bates, S. P. Obenschain, J. Oh, Y. Aglitskiy, T. Watari, A. L. Velikovich, H. Azechi, J. L. Weaver, A. J. Schmitt, T. Sakaiya, M. Karasik, S. T. Zalesak. Acceleration to high velocities and heating by impact using Nike KrF laser. Phys. Plasmas, 17, 056317(2010).

    [6] S. Y. Gus’kov, P. A. Kuchugov, N. P. Zaretskii. Features and limiting characteristics of the heating of a substance by a laser-accelerated fast electron beam. JETP Lett., 111, 135-138(2020).

    [7] R. S. Pease. Equilibrium characteristics of a pinched gas discharge cooled by bremsstrahlung radiation. Proc. Phys. Soc., Sect. B, 70, 11-23(1957).

    [8] V. V. Vikhrev. Contraction of Z-pinch as a result of losses to radiation. JETP Lett, 27, 95-98(1978).

    [9] L. Bernal, H. Bruzzone. Radiative collapses in z-pinches with axial mass losses. Plasma Phys. Controlled Fusion, 44, 95-98(2002).

    [10] W. L. Kruer, R. S. Craxton, P. B. Radha, S. X. Hu, A. A. Solodov, T. C. Sangster, J. D. Sethian, P. W. McKenty, J. A. Delettrez, V. N. Goncharov, A. V. Maximov, K. Tanaka, W. Theobald, R. W. Short, T. J. B. Collins, J. D. Zuegel, K. S. Anderson, J. M. Soures, C. Stoeckl, J. P. Knauer, D. D. Meyerhofer, J. A. Marozas, W. Seka, D. R. Harding, S. Skupsky, R. Betti, D. T. Michel, T. R. Boehly, A. J. Schmitt, R. L. McCrory, J. F. Myatt, S. P. Regan. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 22, 110501(2015).

    [11] R. C. Mancini, P. R. Woodruff, K. Peterson, T. A. Mehlhorn, G. Rochau, I. E. Golovkin, J. E. Bailey, J. J. MacFarlane. Spectroscopic analysis and NLTE radiative cooling effects in ICF capsule implosions with mid- dopants. J. Quant. Spectrosc. Radiat. Transfer, 99, 199-208(2006).

    [12] J. M. Blondin, D. F. Cioffi. The growth of density perturbations in radiative shocks. Astrophys. J., 345, 853(1989).

    [13] J. Laming. Relationship between oscillatory thermal instability and dynamical thin-shell overstability of radiative shocks. Phys. Rev. E, 70, 057402(2004).

    [14] A. E. Dangor, M. Tatarakis, C. N. Danson, A. R. Bell, P. Lee, F. N. Beg, M. E. Glinsky, B. A. Hammel, P. A. Norreys, A. P. Fews. A study of picosecond laser–solid interactions up to 1019 w cm−2. Phys. Plasmas, 4, 447-457(1997).

    [15] F. N. Beg, M. S. Wei, M. G. Haines, R. B. Stephens. Hot-electron temperature and laser-light absorption in fast ignition. Phys. Rev. Lett., 102, 045008(2009).

    [16] A. Schiavi, S. Atzeni, J. R. Davies. Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition. Plasma Phys. Controlled Fusion, 51, 015016(2008).

    [17] J. Meyer-ter-Vehn, J. J. Honrubia. Three-dimensional fast electron transport for ignition-scale inertial fusion capsules. Nucl. Fusion, 46, L25-L28(2006).

    [18] S. Y. Gus’kov, Y. V. Afanasiev. Energy transfer to the plasma in laser targets. Nuclear Fusion by Inertial Confinement: A Comprehensive Treatise, 99-119(1993).

    [19] J. Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933-4024(1995).

    [20] W. D. Hayes, Y. B. Zel’dovich, Y. P. Raizer, R. F. Probstein. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena(1967).

    [21] I. I. Shelaputin, G. V. Shpatakovskaya, V. Y. Karpov, A. P. Fadeev, N. V. Zmitrenko. Description of the physical processes in the DIANA program for calculations of problems of laser fusion, 2, 34-37(1983).

    [22] P. A. Kuchugov, R. A. Yakhin, S. Y. Gus’kov, N. V. Zmitrenko. Effect of ‘wandering’ and other features of energy transfer by fast electrons in a direct-drive inertial confinement fusion target. Plasma Phys. Controlled Fusion, 61, 055003(2019).

    [23] N. V. Zmitrenko, P. A. Kuchugov, R. A. Yakhin, S. Y. Gus’kov. Effect of fast electrons on the gain of a direct-drive laser fusion target. Plasma Phys. Controlled Fusion, 61, 105014(2019).

    [24] V. B. Rozanov, G. A. Vergunova. Influence of intrinsic X-ray emission on the processes in low-density laser targets. Laser Part. Beams, 17, 579-583(1999).

    [25] V. B. Rozanov, G. A. Vergunova. Investigation of compression of indirect-drive targets under conditions of the NIF facility using one-dimensional modelling. Quantum Electron., 50, 162-168(2020).

    S. Yu. Gus’kov, P. A. Kuchugov, G. A. Vergunova. Extreme matter compression caused by radiation cooling effect in gigabar shock wave driven by laser-accelerated fast electrons[J]. Matter and Radiation at Extremes, 2021, 6(2): 020301
    Download Citation