• Frontiers of Optoelectronics
  • Vol. 9, Issue 3, 420 (2016)
Xuepeng ZHAN, Huailiang XU*, and Hongbo SUN
Author Affiliations
  • State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • show less
    DOI: 10.1007/s12200-016-0581-8 Cite this Article
    Xuepeng ZHAN, Huailiang XU, Hongbo SUN. Femtosecond laser processing of microcavity lasers[J]. Frontiers of Optoelectronics, 2016, 9(3): 420 Copy Citation Text show less
    References

    [1] Vahala K J. Optical microcavities. Nature, 2003, 424(6950): 839– 846

    [2] Wiersig J, Gies C, Jahnke F, A mann M, Berstermann T, Bayer M, Kistner C, Reitzenstein S, Schneider C, H fling S, Forchel A, Kruse C, Kalden J, Hommel D. Direct observation of correlations between individual photon emission events of a microcavity laser. Nature, 2009, 460(7252): 245–249

    [3] Harayama T, Shinohara S. Two-dimensional microcavity lasers. Laser & Photonics Reviews, 2011, 5(2): 247–271

    [4] He L, zdemir K, Yang L. Whispering gallery microcavity lasers. Laser & Photonics Reviews, 2013, 7(1): 60–82

    [5] Ilchenko V S, Matsko A B. Optical resonators with whisperinggallery modes-part II: applications. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 15–32

    [6] Kosma K, Zito G, Schuster K, Pissadakis S. Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber. Optics Letters, 2013, 38(8): 1301–1303

    [7] Dai D, Bauters J, Bowers J E. Passive technologies for future largescale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light: Science & Applications, 2012,1(3): e1-1–e1-12

    [8] Kim K H, Bahl G, Lee W, Liu J, Tomes M, Fan X, Carmon T. Cavity optomechanics on a microfluidic resonator with water and viscous liquids. Light: Science & Applications, 2013, 2(11):e110-1– e110-5

    [9] Lai Y, Lan Y, Lu T. Strong light–matter interaction in ZnO microcavities. Light: Science & Applications, 2013, 2(6): e76-1– e76-7

    [10] Grossmann T, Hauser M, Beck T, Gohn-Kreuz C, Karl M, Kalt H, Vannahme C, Mappes T. High-Q conical polymeric microcavities. Applied Physics Letters, 2010, 96(1): 013303

    [11] Ta V D, Chen R, Sun H D. Self-assembled flexible microlasers. Advanced Materials, 2012, 24(10): OP60–OP64

    [12] Chen R, Ta V D, Sun H D. Single mode lasing from hybrid hemispherical microresonators. Scientific Reports, 2012, 2: 244

    [13] Wu Y, Leung P T. Lasing threshold for whispering-gallery-mode microsphere lasers. Physical Review A, 1999, 60(1): 630–633

    [14] Fang H, Ding R, Lu S, Yang Y, Chen Q, Feng J, Huang Y, Sun H. Whispering-gallery mode lasing from patterned molecular singlecrystalline microcavity array. Laser & Photonics Reviews, 2013, 7 (2): 281–288

    [15] Lu S Y, Fang H H, Feng J, Xia H, Zhang T Q, Chen Q D, Sun H B. Highly stable on-chip embedded organic whispering gallery mode lasers. Journal of Lightwave Technology, 2014, 32(13): 2415–2419

    [16] Kitur J K, Podolskiy V A, Noginov M A. Stimulated emission of surface plasmon polaritons in a microcylinder cavity. Physical Review Letters, 2011, 106(18): 183903

    [17] Min B, Ostby E, Sorger V, Ulin-Avila E, Yang L, Zhang X, Vahala K. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature, 2009, 457(7228): 455–458

    [18] Jiang X, Zou C, Wang L, Gong Q, Xiao Y. Whispering-gallery microcavities with unidirectional laser emission. Laser & Photonics Reviews, 2016, 10(1): 40–61

    [19] Armani A M, Srinivasan A, Vahala K J. Soft lithographic fabrication of high Q polymer microcavity arrays. Nano Letters, 2007, 7(6): 1823–1826

    [20] Huang Y, Lin J, Yang Y, Yao Q, Lv X, Xiao J, Du Y. Unidirectionalemission single mode whispering-gallery-mode microlasers. In: Proceedings of SPIE, Microcavity Lasers and Applications I. 2012, 8236: 1–8

    [21] Wu X, Li H, Liu L, Xu L. Unidirectional single-frequency lasing from a ring-shaped coupled microcavity laser. Applied Physics Letters, 2008, 93(8): 081105

    [22] Kawata S, Sun H B, Tanaka T, Takada K. Finer features for functional microdevices. Nature, 2001, 412(6848): 697–698

    [23] Zhang Y, Chen Q, Xia H, Sun H. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5(5): 435–448

    [24] Liu Z P, Jiang X F, Li Y, Xiao Y F, Wang L, Ren J L, Zhang S J, Yang H, Gong Q. High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization. Applied Physics Letters, 2013, 102(22): 221108

    [25] Song J, Lin J, Tang J, Liao Y, He F, Wang Z, Qiao L, Sugioka K, Cheng Y. Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining. Optics Express, 2014, 22(12): 14792–14802

    [26] Lin J, Yu S, Ma Y, Fang W, He F, Qiao L, Tong L, Cheng Y, Xu Z. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing. Optics Express, 2012, 20(9): 10212–10217

    [27] Lin J, Xu Y, Fang Z, Wang M, Song J, Wang N, Qiao L, Fang W, Cheng Y.Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Scientific Reports, 2015, 5: 8072

    [28] Lin J, Xu Y, Tang J, Wang N, Song J, He F, Fang W, Cheng Y. Fabrication of three-dimensional microdisk resonators in calcium fluoride by femtosecond laser micromachining. Applied Physics A, Materials Science & Processing, 2014, 116(4): 2019–2023

    [29] Ta V D, Chen R, Sun H. Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing. Advanced Optical Materials, 2014, 2(3): 220–225

    [30] Joshi M P, Pudavar H E, Swiatkiewicz J, Prasad P N, Reianhardt B A. Three-dimensional optical circuitry using two-photon-assisted polymerization. Applied Physics Letters, 1999, 74(2): 170–172

    [31] Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H, Xiao F. Direct imprinting of microcircuits on grapheme oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1): 15–20

    [32] Xu B B, Xia H, Niu L G, Zhang Y L, Sun K, Chen Q D, Xu Y, Lv Z Q, Li Z H, Misawa H, Sun H B. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small, 2010, 6(16): 1762–1766

    [33] Xia H,Wang J, Tian Y, Chen Q D, Du X B, Zhang Y L, He Y, Sun H B. Ferrofluids for fabrication of remotely controllable micronanomachines by two-photon polymerization. Advanced Materials, 2010, 22(29): 3204–3207

    [34] Wang J, He Y, Xia H, Niu L G, Zhang R, Chen Q D, Zhang Y L, Li Y F, Zeng S J, Qin J H, Lin B C, Sun H B. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab on a Chip, 2010, 10(15): 1993–1996

    [35] Huang Q, Zhan X, Hou Z, Chen Q, Xu H. Polymer photonicmolecule microlaser fabricated by femtosecond laser direct writing. Optics Communications, 2016, 362: 73–76

    [36] Grossmann T, Schleede S, Hauser M, Beck T, Thiel M, von Freymann G, Mappes T, Kalt H. Direct laser writing for active and passive high-Q polymer microdisks on silicon. Optics Express, 2011, 19(12): 11451–11456

    [37] Liu Z, Jiang X, Li Y, Xiao Y, Wang L, Ren J, Zhang S, Yang H, Gong Q. High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization. Applied Physics Letters, 2013, 102(22): 221108

    [38] Ku J F, Chen Q D, Zhang R, Sun H B. Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing. Optics Letters, 2011, 36(15): 2871–2873

    [39] Sasaki F, Kobayashi S, Haraichi S, Fujiwara S, Bando K, Masumoto Y, Hotta S. Microdisk and microring lasers of thiophene–phenylene co-oligomers embedded in Si/SiO2 substrates. Advanced Materials, 2007, 19(21): 3653–3655

    [40] Grossmann T, Schleede S, Hauser M, Beck T, Thiel M, von Freymann G, Mappes T, Kalt H. Direct laser writing for active and passive high-Q polymer microdisks on silicon. Optics Express, 2011, 19(12): 11451–11456

    [41] Juodkazis S, Fujiwara K, Takahashi T, Matsuo S, Misawa H. Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity. Journal of Applied Physics, 2002, 91(3): 916–921

    [42] Ben-Messaoud T, Zyss J. Unidirectional laser emission from polymer-based spiral microdisks. Applied Physics Letters, 2005, 86(24): 241110

    [43] Zhan X P, Ku J F, Xu Y X, Zhang X L, Zhao J, Fang W, Xu H L, Sun H B. Unidirectional lasing from a spiral-shaped microcavity of dye-doped polymers fabricated by femtosecond laser direct writing. IEEE Photonics Technology Letters, 2015, 27(3): 311–314

    [44] Hara Y, Mukaiyama T, Takeda K, Kuwata-Gonokami M. Photonic molecule lasing. Optics Letters, 2003, 28(24): 2437–2439

    [45] Grossmann T, Wienhold T, Bog U, Beck T, Friedmann C, Kalt H, Mappes T. Polymeric photonic molecule super-mode lasers on silicon. Light: Science & Applications, 2013, 2(5): e82-1–e82-4

    [46] Ku J F, Chen Q D, Ma X W, Yang Y D, Huang Y Z, Xu H L, Sun H B. Photonic-molecule single-mode laser. IEEE Photonics Technology Letters, 2015, 27(11): 1157–1160

    [47] Sun Y, Hou Z, Sun S, Zheng B, Ku J, Dong W, Chen Q, Sun H. Protein-based three-dimensional whispering-gallery-mode microlasers with stimulus-responsiveness. Scientific Reports, 2015, 5: 12852

    Xuepeng ZHAN, Huailiang XU, Hongbo SUN. Femtosecond laser processing of microcavity lasers[J]. Frontiers of Optoelectronics, 2016, 9(3): 420
    Download Citation