• Photonics Research
  • Vol. 13, Issue 4, 1010 (2025)
Qianwen Jia1, Junhong Deng2, Anwen Jiang1, Guoxia Yang1..., Fengzhao Cao1, Min Ni1, Jiayi Zhang1, Yihe Li1, Haojie Li1,3, Dahe Liu1, Guixin Li4 and Jinwei Shi1,*|Show fewer author(s)
Author Affiliations
  • 1Applied Optics Beijing Area Major Laboratory and Key Laboratory of Multiscale Spin Physics, Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
  • 2Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • 3School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
  • 4Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • show less
    DOI: 10.1364/PRJ.553211 Cite this Article Set citation alerts
    Qianwen Jia, Junhong Deng, Anwen Jiang, Guoxia Yang, Fengzhao Cao, Min Ni, Jiayi Zhang, Yihe Li, Haojie Li, Dahe Liu, Guixin Li, Jinwei Shi, "Reusable high-Q plasmonic metasurface," Photonics Res. 13, 1010 (2025) Copy Citation Text show less
    References

    [1] N. Fang, H. Lee, C. Sun. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [2] E. Ozbay. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 311, 189-193(2006).

    [3] D. K. Gramotnev, S. I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photonics, 4, 83-91(2010).

    [4] T. W. Lo, X. L. Chen, Z. D. Zhang. Plasmonic nanocavity induced coupling and boost of dark excitons in monolayer WSe2 at room temperature. Nano Lett., 22, 1915-1921(2022).

    [5] L. L. Yang, X. Xie, J. N. Yang. Strong light–matter interactions between gap plasmons and two-dimensional excitons under ambient conditions in a deterministic way. Nano Lett., 22, 2177-2186(2022).

    [6] Y. J. Niu, H. X. Xu, H. Wei. Unified scattering and photoluminescence spectra for strong plasmon-exciton coupling. Phys. Rev. Lett., 128, 167402(2022).

    [7] S. I. Azzam, V. M. Shalaev, A. Boltasseva. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys. Rev. Lett., 121, 253901(2018).

    [8] D. G. Baranov, B. Munkhbat, E. Zhukova. Ultrastrong coupling between nanoparticle plasmons and cavity photons at ambient conditions. Nat. Commun., 11, 2715(2020).

    [9] I. C. Seo, S. Kim, B. H. Woo. Fourier-plane investigation of plasmonic bound states in the continuum and molecular emission coupling. Nanophotonics, 9, 4565-4577(2020).

    [10] D. Yoo, F. de León-Pérez, M. Pelton. Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nat. Photonics, 15, 125-130(2020).

    [11] X. X. Yang, F. Zhai, H. Hu. Far-field spectroscopy and near-field optical imaging of coupled plasmon–phonon polaritons in 2D van der Waals heterostructures. Adv. Mater., 28, 2931-2938(2016).

    [12] S. Y. Sun, Y. F. Ding, H. Z. Li. Tunable plasmonic bound states in the continuum in the visible range. Phys. Rev. B, 103, 045416(2021).

    [13] F. Z. Cao, M. M. Zhou, C. W. Cheng. Interaction of plasmonic bound states in the continuum. Photonics Res., 11, 724-731(2023).

    [14] B. K. Lyu, H. J. Li, Q. W. Jia. Moiré metasurface with triple-band near-perfect chirality. Chin. Phys. Lett., 40, 054202(2023).

    [15] Y. H. Tang, Y. Liang, J. Yao. Chiral bound states in the continuum in plasmonic metasurfaces. Laser Photonics Rev., 17, 2200597(2023).

    [16] Y. Zhou, Z. H. Guo, X. Y. Zhao. Dual-quasi bound states in the continuum enabled plasmonic metasurfaces. Adv. Opt. Mater., 10, 2200965(2022).

    [17] X. Y. Zhang, Q. Li, F. F. Liu. Controlling angular dispersions in optical metasurfaces. Light Sci. Appl., 9, 76(2020).

    [18] Z. T. Huang, C. W. Yin, Y. H. Hong. Hybrid plasmonic surface lattice resonance perovskite lasers on silver nanoparticle arrays. Adv. Opt. Mater., 9, 2100299(2021).

    [19] B. K. Lyu, Y. Li, Q. W. Jia. Manipulating the chirality of moiré metasurface by symmetry breaking. Laser Photonics Rev., 17, 2201004(2023).

    [20] J. Wang, T. Weber, A. Aigner. Mirror-coupled plasmonic bound states in the continuum for tunable perfect absorption. Laser Photonics Rev., 17, 2300294(2023).

    [21] X. Wang, S. C. Huang, S. Hu. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys., 2, 253-271(2020).

    [22] S. M. Chen, B. Reineke, G. X. Li. Strong nonlinear optical activity induced by lattice surface modes on plasmonic metasurface. Nano Lett., 19, 6278-6283(2019).

    [23] B. Krause, D. Mishra, J. Y. Chen. Nonlinear strong coupling by second-harmonic generation enhancement in plasmonic nanopatch antennas. Adv. Opt. Mater., 10, 2200510(2022).

    [24] H. Wang, Z. X. Hu, J. H. Deng. All-optical ultrafast polarizition switching with nonlinear plasmonic metasurfaces. Sci. Adv., 10, eadk3882(2024).

    [25] B. Q. Wang, P. Yu, W. H. Wang. High-Q plasmonic resonances: fundamentals and applications. Adv. Opt. Mater., 9, 2001520(2021).

    [26] K. Yang, X. Yao, B. W. Liu. Metallic plasmonic array structures: principles, fabrications, properties, and applications. Adv. Mater., 33, 2007988(2021).

    [27] K. M. Mayer, J. H. Hafner. Localized surface plasmon resonance sensors. Chem. Rev., 111, 3828-3857(2011).

    [28] A. Shalabney, I. Abdulhalim. Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev., 5, 571-606(2011).

    [29] V. Amendola, R. Pilot, M. Frasconi. Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter., 29, 203002(2017).

    [30] V. G. Kravets, A. V. Kabashin, W. L. Barnes. Plasmonic surface lattice resonances: a review of properties and applications. Chem. Rev., 118, 5912-5951(2018).

    [31] M. F. Limonov, M. V. Rybin, A. N. Poddubny. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [32] B. D. Thackray, P. A. Thomas, G. H. Auton. Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator. Nano Lett., 15, 3519-3523(2015).

    [33] Q. Le-Van, E. Zoethout, E. J. Geluk. Enhanced quality factors of surface lattice resonances in plasmonic arrays of nanoparticles. Adv. Opt. Mater., 7, 1801451(2019).

    [34] Y. Shen, K. He, Q. S. Zou. Ultrasmooth gold nanogroove arrays: ultranarrow plasmon resonators with linewidth down to 2 nm and their applications in refractive index sensing. Adv. Funct. Mater., 32, 2108741(2021).

    [35] J. Kelavuori, V. Vanyukov, T. Stolt. Thermal control of plasmonic surface lattice resonances. Nano Lett., 22, 3879-3883(2022).

    [36] L. Michaeli, S. Keren-Zur, O. Avayu. Nonlinear surface lattice resonance in plasmonic nanoparticle arrays. Phys. Rev. Lett., 118, 243904(2017).

    [37] D. C. Hooper, C. Kuppe, D. Q. Wang. Second harmonic spectroscopy of surface lattice resonances. Nano Lett., 19, 165-172(2018).

    [38] A. Danilov, G. Tselikov, F. Wu. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications. Biosens. Bioelectron., 104, 102-112(2018).

    [39] M. S. Bin-Alam, O. Reshef, Y. Mamchur. Ultra-high-Q resonances in plasmonic metasurfaces. Nat. Commun., 12, 974(2021).

    [40] B. Auguié, X. M. Bendaña, W. L. Barnes. Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate. Phys. Rev. B, 82, 155447(2010).

    [41] G. Y. Li, X. Du, L. Xiong. Plasmonic metasurfaces with quality factors up to 790 in the visible regime. Adv. Opt. Mater., 11, 2301205(2023).

    [42] K. Koshelev, S. Lepeshov, M. K. Liu. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [43] E. Melik-Gaykazyan, K. Koshelev, J. H. Choi. From Fano to quasi-BIC resonances in individual dielectric nanoantennas. Nano Lett., 21, 1765-1771(2021).

    [44] J. J. Wang, P. S. Li, X. Q. Zhao. Optical bound states in the continuum in periodic structures: mechanisms, effects, and applications. Photonics Insights, 3, R01(2024).

    [45] C. W. Hsu, B. Zhen, A. D. Stone. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [46] B. Zhen, C. W. Hsu, L. Lu. Topological nature of optical bound states in the continuum. Phys. Rev. Lett., 113, 257401(2014).

    [47] J. C. Jin, X. F. Yin, L. F. Ni. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature, 574, 501-504(2019).

    [48] Y. W. Zhang, A. Chen, W. Z. Liu. Observation of polarization vortices in momentum space. Phys. Rev. Lett., 120, 186103(2018).

    [49] Z. P. Zhuang, H. L. Zeng, X. D. Chen. Topological nature of radiation asymmetry in bilayer metagratings. Phys. Rev. Lett., 132, 113801(2024).

    [50] P. Hu, J. J. Wang, Q. Jiang. Global phase diagram of bound states in the continuum. Optica, 9, 1353-1361(2022).

    [51] H. H. Hsiao, Y. C. Hsu, A. Y. Liu. Ultrasensitive refractive index sensing based on the quasi-bound states in the continuum of all-dielectric metasurfaces. Adv. Opt. Mater., 10, 2200812(2022).

    [52] W. Z. Liu, B. Wang, Y. W. Zhang. Circularly polarized states spawning from bound states in the continuum. Phys. Rev. Lett., 123, 116104(2019).

    [53] X. D. Zhang, Y. L. Liu, J. C. Han. Chiral emission from resonant metasurfaces. Science, 377, 1215-1218(2022).

    [54] T. Shi, Z. L. Deng, G. Z. Geng. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nat. Commun., 13, 4111(2022).

    [55] H. Y. Qin, Z. P. Su, M. Q. Liu. Arbitrarily polarized bound states in the continuum with twisted photonic crystal slabs. Light Sci. Appl., 12, 66(2023).

    [56] Y. Chen, H. C. Deng, X. B. Sha. Observation of intrinsic chiral bound states in the continuum. Nature, 613, 474-478(2023).

    [57] L. Huang, W. X. Zhang, X. D. Zhang. Moiré quasibound states in the continuum. Phys. Rev. Lett., 128, 253901(2022).

    [58] M. M. Zhou, S. J. You, J. Liu. Selective perturbation of eigenfield enables high-Q quasi-bound states in the continuum in dielectric metasurfaces. ACS Photonics, 11, 2413-2421(2024).

    [59] Y. Liang, D. P. Tsai, Y. Kivshar. From local to nonlocal high-Q plasmonic metasurfaces. Phys. Rev. Lett., 133, 053801(2024).

    [60] Y. Liang, K. Koshelev, F. C. Zhang. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett., 20, 6351-6356(2020).

    [61] Z. C. Wang, J. C. Sun, J. Y. Li. Customizing 2.5D out-of-plane architectures for robust plasmonic bound-states-in-the-continuum metasurfaces. Adv. Sci., 10, 2206236(2023).

    [62] S. Joseph, S. Sarkar, S. Khan. Exploring the optical bound state in the continuum in a dielectric grating coupled plasmonic hybrid system. Adv. Opt. Mater., 9, 2001895(2021).

    [63] X. Y. Sun, J. C. Sun, Z. C. Wang. Manipulating dual bound states in the continuum for efficient spatial light modulator. Nano Lett., 22, 9982-9989(2022).

    [64] Z. Wang, Y. Liang, J. Q. Qu. Plasmonic bound states in the continuum for unpolarized weak spatially coherent light. Photonics Res., 11, 260-269(2023).

    [65] Q. T. Trinh, S. K. Nguyen, D. H. Nguyen. Coexistence of surface lattice resonances and bound states in the continuum in a plasmonic lattice. Opt. Lett., 47, 1510(2022).

    [66] O. Reshef, M. Saad-Bin-Alam, M. J. Huttunen. Multiresonant high-Q plasmonic metasurfaces. Nano Lett., 19, 6429-6434(2019).

    [67] Y. He, G. T. Guo, T. H. Feng. Toroidal dipole bound states in the continuum. Phys. Rev. B, 98, 161112(2018).

    [68] S. A. Maier. Plasmonics: Fundamentals and Applications, 1(2007).

    [69] M. Kang, T. Liu, C. T. Chan. Applications of bound states in the continuum in photonics. Nat. Rev. Phys., 5, 659-678(2023).

    Qianwen Jia, Junhong Deng, Anwen Jiang, Guoxia Yang, Fengzhao Cao, Min Ni, Jiayi Zhang, Yihe Li, Haojie Li, Dahe Liu, Guixin Li, Jinwei Shi, "Reusable high-Q plasmonic metasurface," Photonics Res. 13, 1010 (2025)
    Download Citation