[2] ROSENQVIST M, BERTRON A, FRIDH K, et al. Concrete alteration due to 55 years of exposure to river water: Chemical and mineralogical characterisation[J]. Cem Concr Res, 2017, 92: 110–120.
[5] ZHANG M, SHEN P C, ZOU D J, et al. Impact of supplementary cementitious materials on the solid–liquid equilibrium curve of calcium in cement hydrates[J]. Mater Struct, 2024, 57(3): 47.
[6] CONSTANTINIDES G, ULM F J. The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling[J]. Cem Concr Res, 2004, 34(1): 67–80.
[9] NGUYEN T N, PHUNG Q T, JACQUES D, et al. Microstructure, water permeability and micromechanical properties of alkali activated slag subjected to accelerated leaching[J]. Mater Des, 2024, 238: 112706.
[10] ZHANG M, ZOU D J, LIU T J, et al. Calcium leaching mechanism of cementitious materials in the marine environment[J]. J Mater Civ Eng, 2023, 35(6): 04023122.
[13] LI X, YAN P Y. Microstructural variation of hardened cement-fly ash pastes leached by soft water[J]. Sci China Technol Sci, 2010, 53(11): 3033–3038.
[14] JAIN J, NEITHALATH N. Analysis of calcium leaching behavior of plain and modified cement pastes in pure water[J]. Cem Concr Compos, 2009, 31(3): 176–185.
[15] CARDE C, ESCADEILLAS G, FRANOIS A H. Use of ammonium nitrate solution to simulate and accelerate the leaching of cement pastes due to deionized water[J]. Mag Concr Res, 1997, 49(181): 295–301.
[16] TANG Y J, ZUO X B, YIN G J, et al. Influence of slag on leaching behavior of cement mortar lined in ductile iron pipe under a flowing solution[J]. Mater Des, 2017, 114: 612–622.
[17] SONG Z J, LIU Y Q, JIANG L H, et al. Determination of calcium leaching behavior of cement pastes exposed to ammonium chloride aqueous solution via an electrochemical impedance spectroscopic approach[J]. Constr Build Mater, 2019, 196: 267–276.
[18] YANG H, JIANG L H, ZHANG Y. The effect of fly ash on calcium leaching properties of cement pastes in ammonium chloride solution[J]. Adv Mater Res, 2010, 163–167: 1162–1170.
[19] MYERS R J, L’HPITAL E, PROVIS J L, et al. Effect of temperature and aluminium on calcium (alumino) silicate hydrate chemistry under equilibrium conditions[J]. Cem Concr Res, 2015, 68: 83–93.
[20] CUESTA A, AYUELA A, ARANDA M A G. Belite cements and their activation[J]. Cem Concr Res, 2021, 140: 106319.
[21] WANG L, YANG H Q, DONG Y, et al. Environmental evaluation, hydration, pore structure, volume deformation and abrasion resistance of low heat Portland (LHP) cement-based materials[J]. J Clean Prod, 2018, 203: 540–558.
[22] SIDDIQUE R. Performance characteristics of high-volume Class F fly ash concrete[J]. Cem Concr Res, 2004, 34(3): 487–493.
[23] MEHTA P K. Influence of fly ash characteristics on the strength of portland-fly ash mixtures[J]. Cem Concr Res, 1985, 15(4): 669–674.
[24] FENG P, MIAO C W, BULLARD J W. A model of phase stability, microstructure and properties during leaching of Portland cement binders[J]. Cem Concr Compos, 2014, 49: 9–19.
[25] SHI C J, STEGEMANN J A. Acid corrosion resistance of different cementing materials[J]. Cem Concr Res, 2000, 30(5): 803–808.
[26] GARCIA-LODEIRO I, GORACCI G, DOLADO J S, et al. Mineralogical and microstructural alterations in a Portland cement paste after an accelerated decalcification process[J]. Cem Concr Res, 2021, 140: 106312.
[27] LOTHENBACH B, SCRIVENER K, SNELLINGS R. A practical guide to microstructural analysis of cementitious materials[M]..
[28] PUERTAS F, GOI S, HERNNDEZ M S, et al. Comparative study of accelerated decalcification process among C3S, grey and white cement pastes[J]. Cem Concr Compos, 2012, 34(3): 384–391.
[29] KUNHI MOHAMED A, MOUTZOURI P, BERRUYER P, et al. The atomic-level structure of cementitious calcium aluminate silicate hydrate[J]. J Am Chem Soc, 2020, 142(25): 11060–11071.
[30] L’HPITAL E, LOTHENBACH B, LE SAOUT G, et al. Incorporation of aluminium in calcium-silicate-hydrates[J]. Cem Concr Res, 2015, 75: 91–103.
[31] YANG S Y, YAN Y R, LOTHENBACH B, et al. Incorporation of sodium and aluminum in cementitious calcium-alumino-silicate- hydrate C-(A)-S-H phases studied by 23Na, 27Al, and 29Si MAS NMR spectroscopy[J]. J Phys Chem C, 2021, 125(51): 27975–27995.
[32] CHEN J J, THOMAS J J, TAYLOR H F W, et al. Solubility and structure of calcium silicate hydrate[J]. Cem Concr Res, 2004, 34(9): 1499–1519.
[33] KOMARNENI S, ROY R, ROY D M, et al. 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy of Al-substituted tobermorites[J]. J Mater Sci, 1985, 20(11): 4209–4214.
[34] SKIBSTED J, JAKOBSEN H J, HALL C. Quantification of calcium silicate phases in Portland cements by 29Si MAS NMR spectroscopy[J]. J Chem Soc, Faraday Trans, 1995, 91(24): 4423–4430.
[35] MAIA NETO F, SNELLINGS R, SKIBSTED J. Aqueous carbonation of aged blended Portland cement pastes: Impact of the Al/Si ratio on the structure of the alumina-silica gel[J]. Cem Concr Res, 2024, 177: 107428.
[36] JIN M, MA Y F, LI W W, et al. Multi-scale investigation on composition-structure of C-(A)-S-H with different Al/Si ratios under attack of decalcification action[J]. Cem Concr Res, 2023, 172: 107251.
[37] MA Y F, LI W W, JIN M, et al. Influences of leaching on the composition, structure and morphology of calcium silicate hydrate (C-S-H) with different Ca/Si ratios[J]. J Build Eng, 2022, 58: 105017.
[38] MA Y F, JIN M, LI W W, et al. Effect of drying method on calcium silicate hydrate (C-S-H): Experiments and molecular dynamics simulations study[J]. Constr Build Mater, 2024, 411: 134367.
[39] XIE J, WU Z M, ZHANG X H, et al. Trends and developments in low-heat Portland cement and concrete: A review[J]. Constr Build Mater, 2023, 392: 131535.
[40] ZENG H Y, JIN M, LI W W, et al. Performance evolution of low heat cement under thermal cycling fatigue: A comparative study with moderate heat cement and ordinary Portland cement[J]. Constr Build Mater, 2024, 412: 134863.