• Chinese Journal of Lasers
  • Vol. 48, Issue 23, 2314002 (2021)
Yuling Lü, Fengping Yan*, Xuemei Du, and Wei Wang
Author Affiliations
  • Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
  • show less
    DOI: 10.3788/CJL202148.2314002 Cite this Article Set citation alerts
    Yuling Lü, Fengping Yan, Xuemei Du, Wei Wang. Polarization- and Angle-Insensitive Electromagnetically Induced Transparency-Like Metamaterial[J]. Chinese Journal of Lasers, 2021, 48(23): 2314002 Copy Citation Text show less
    References

    [1] Zhang C H, Wu J B, Jin B B. Research progress on terahertz superconducting artificial electromagnetic metamaterials[J]. Chinese Journal of Lasers, 46, 0614005(2019).

    [2] Huo H, Yan F P, Wang W et al. Terahertz high-sensitivity sensor design based on metamaterial[J]. Chinese Journal of Lasers, 47, 0814004(2020).

    [3] Zheludev N I. The road ahead for metamaterials[J]. Science, 328, 582-583(2010).

    [4] Boller K J, Imamoğlu A, Harris S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 66, 2593-2596(1991).

    [5] Wang Y R, Liang L J, Yang M S et al. Terahertz metamaterial based on controllable electromagnetic induced transparency structure[J]. Laser & Optoelectronics Progress, 56, 041603(2019).

    [6] Tassin P, Zhang L, Koschny T et al. Planar designs for electromagnetically induced transparency in metamaterials[J]. Optics Express, 17, 5595-5605(2009).

    [7] Li Z Y, Ma Y F, Huang R et al. Manipulating the plasmon-induced transparency in terahertz metamaterials[J]. Optics Express, 19, 8912-8919(2011).

    [8] Zhang S, Genov D A, Wang Y et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 101, 047401(2008).

    [9] Liu X J, Gu J Q, Singh R et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode[J]. Applied Physics Letters, 100, 131101(2012).

    [10] Gu J Q, Singh R J, Liu X J et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 3, 1151(2012).

    [11] Papasimakis N, Fedotov V A, Zheludev N et al. Metamaterial analog of electromagnetically induced transparency[J]. Physical Review Letters, 101, 253903(2008).

    [12] Wu J B, Jin B B, Wan J et al. Superconducting terahertz metamaterials mimicking electromagnetically induced transparency[J]. Applied Physics Letters, 99, 161113(2011).

    [13] Zhang C H, Wu J B, Jin B B et al. Tunable electromagnetically induced transparency from a superconducting terahertz metamaterial[J]. Applied Physics Letters, 110, 241105(2017).

    [14] Miao Q. Design of terahertz metamaterial modulator based on the transition principle of vanadium dioxide[D], 29-42(2019).

    [15] Zhao X L, Zhu L, Yuan C et al. Reconfigurable hybrid metamaterial waveguide system at terahertz regime[J]. Optics Express, 24, 18244-18251(2016).

    [16] Li G S, Yan F P, Wang W et al. Analysis of photosensitive tunable multiband electromagnetically induced transparency metamaterials[J]. Chinese Journal of Lasers, 46, 0114002(2019).

    [17] Wang X B. Research on electromagnetically-induced transparency based on metamaterials in terahertz band[D], 51-57(2017).

    [18] He X J, Yang X Y, Li S P et al. Electrically active manipulation of electromagnetic induced transparency in hybrid terahertz metamaterial[J]. Optical Materials Express, 6, 3075-3085(2016).

    [19] Fu Q H, Zhang F L, Fan Y C et al. Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory[J]. Applied Physics Letters, 110, 221905(2017).

    [20] Ding J, Arigong B, Ren H et al. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows[J]. Scientific Reports, 4, 6128(2014).

    [21] He X J, Yang X Y, Lu G J et al. Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial[J]. Carbon, 123, 668-675(2017).

    [22] Zhang K, Liu Y, Wu H W et al. Dynamically selective control of dual-mode electromagnetically induced transparency in terahertz metal-graphene metamaterial[J]. OSA Continuum, 3, 505-514(2020).

    [23] Shu C, Chen Q G, Mei J S et al. Dynamically tunable implementation of electromagnetically induced transparency with two coupling graphene-nanostrips in terahertz region[J]. Optics Communications, 411, 48-52(2018).

    [24] Du X M, Yan F P, Wang W et al. A polarization- and angle-insensitive broadband tunable metamaterial absorber using patterned graphene resonators in the terahertz band[J]. Optics & Laser Technology, 132, 106513(2020).

    [25] Xiao S Y, Wang T, Liu T T et al. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials[J]. Carbon, 126, 271-278(2018).

    [26] Xiao S Y, Wang T, Jiang X Y et al. Strong interaction between graphene layer and Fano resonance in terahertz metamaterials[J]. Journal of Physics D, 50, 195101(2017).

    [27] Chen M M, Xiao Z Y, Lu X J et al. Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial[J]. Carbon, 159, 273-282(2020).

    [28] Shu C, Mei J S. Tunable manipulation of electromagnetically induced transparency in resonance amplitude based on metal-graphene complementary metamaterial[J]. Optics Communications, 459, 124966(2020).

    [29] Wei B Z. Research of plasmonic analogue of electromagnetically-induced transparency and related devices[D], 21-37(2019).

    [30] Liu C X, Liu P G, Yang C et al. Dynamic electromagnetically induced transparency based on a metal-graphene hybrid metamaterial[J]. Optical Materials Express, 8, 1132-1142(2018).

    [31] He X J, Huang Y M, Yang X Y et al. Tunable electromagnetically induced transparency based on terahertz graphene metamaterial[J]. RSC Advances, 40321-40326(2017).

    [32] Wang T L, Cao M Y, Zhang Y P et al. Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies[J]. Optical Materials Express, 9, 1562-1576(2019).

    [33] Xiao B G, Tong S J, Fyffe A et al. Tunable electromagnetically induced transparency based on graphene metamaterials[J]. Optics Express, 28, 4048-4057(2020).

    [34] Cao Y Y. Study on adjustable electromagnetically induced transparency based on graphene metamaterials[D], 37-45(2017).

    [35] Xia S X, Zhai X, Wang L L et al. Plasmonically induced transparency in double-layered graphene nanoribbons[J]. Photonics Research, 6, 692-702(2018).

    [36] Wang X J, Meng H Y, Deng S Y et al. Hybrid metal graphene-based tunable plasmon-induced transparency in terahertz metasurface[J]. Nanomaterials, 9, 385(2019).

    [37] Chen H, Zhang H Y, Liu M D et al. Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals[J]. Optical Materials Express, 7, 3397-3407(2017).

    [38] Tang Y Z, Ma W Y, Wei Y H et al. A novel EIT-like metamaterial based on destructive interference between magnetic trapped modes[J]. Journal of Terahertz Science and Electronic Information Technology, 16, 191-194(2018).

    [39] Ma C W, Ma W Y, Tan Y et al. High Q-factor terahertz metamaterial based on analog of electromagnetically induced transparency and its sensing characteristics[J]. Opto-Electronic Engineering, 45, 86-93(2018).

    [40] Pan W, Yan Y J, Shen D J. Performance analysis of terahertz metamaterial sensor based on electromagnetically induced transparency[J]. Infrared Technology, 40, 707-711(2018).

    [41] Ma T, Huang Q P, He H C et al. All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range[J]. Optics Express, 27, 16624-16634(2019).

    Yuling Lü, Fengping Yan, Xuemei Du, Wei Wang. Polarization- and Angle-Insensitive Electromagnetically Induced Transparency-Like Metamaterial[J]. Chinese Journal of Lasers, 2021, 48(23): 2314002
    Download Citation