• Chinese Journal of Lasers
  • Vol. 52, Issue 12, 1202301 (2025)
Changshuai Zhai1, Pengfei Guo1,*, Fei Wang1, Qi Yang1..., Zhen Wang1, Jianfeng Geng1, Huijun Wang1, Jun Yu2 and Xin Lin2,**|Show fewer author(s)
Author Affiliations
  • 1Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, Shandong , China
  • 2State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, Shaanxi , China
  • show less
    DOI: 10.3788/CJL250461 Cite this Article Set citation alerts
    Changshuai Zhai, Pengfei Guo, Fei Wang, Qi Yang, Zhen Wang, Jianfeng Geng, Huijun Wang, Jun Yu, Xin Lin. Effects of Microstructure of Inconel 718 Alloy Melted by Laser Powder Bed and Its Composites on Electrolytic Grinding Surface Quality[J]. Chinese Journal of Lasers, 2025, 52(12): 1202301 Copy Citation Text show less
    References

    [1] Song W, Zhu Y P, Liang J J et al. Effect of powder recycling on microstructure and tensile behavior of GH4169 alloy fabricated by selective laser melting (invited)[J]. Chinese Journal of Lasers, 51, 1002310(2024).

    [2] Chen X Y, Wei H L, Liu T T et al. In-situ monitoring and diagnostics for deposition defects in laser powder bed fusion process based on optical signals of melt pool (invited)[J]. Chinese Journal of Lasers, 51, 1002308(2024).

    [3] Wang X Q, Gong X B, Chou K. Review on powder-bed laser additive manufacturing of Inconel 718 parts[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231, 1890-1903(2017).

    [4] Chen J T, Zhang K, Liu T T et al. Monitoring of warping deformation of laser powder bed fusion formed parts[J]. Chinese Journal of Lasers, 51, 1602306(2024).

    [5] Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718[J]. Additive Manufacturing, 30, 100877(2019).

    [6] Zhang S H, Zhang H Y, Cheng M. Tensile deformation and fracture characteristics of delta-processed Inconel 718 alloy at elevated temperature[J]. Materials Science and Engineering: A, 528, 6253-6258(2011).

    [7] Liu F C, Lin X, Yang G L et al. Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy[J]. Optics & Laser Technology, 43, 208-213(2011).

    [8] Korkmaz M E, Gupta M K, Robak G et al. Development of lattice structure with selective laser melting process: a state of the art on properties, future trends and challenges[J]. Journal of Manufacturing Processes, 81, 1040-1063(2022).

    [9] Yin J, Hao L, Yang L L et al. Investigation of interaction between vapor plume and spatter during selective laser melting additive manufacturing[J]. Chinese Journal of Lasers, 49, 1402202(2022).

    [10] Lin X, Huang W D. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica (Informationis), 45, 1111-1126(2015).

    [11] Bi G, Sun C N, Nai M L et al. Micro-structure and mechanical properties of nano-TiC reinforced Inconel 625 deposited using LAAM[J]. Physics Procedia, 41, 828-834(2013).

    [12] Zhang H M, Gu D D, Ma C L et al. Understanding tensile and creep properties of WC reinforced nickel-based composites fabricated by selective laser melting[J]. Materials Science and Engineering: A, 802, 140431(2021).

    [13] Guo C, Li S, Shi S et al. Effect of processing parameters on surface roughness, porosity and cracking of as-built IN738LC parts fabricated by laser powder bed fusion[J]. Journal of Materials Processing Technology, 285, 116788(2020).

    [14] Liu H, Meurer M, Bergs T. Experimental and finite element analysis of adapted cutting fluid supply on tool temperature and wear progression in Inconel 718 turning[J]. Journal of Manufacturing Processes, 137, 166-180(2025).

    [15] Liu X L, Wang Y F, Yang Y et al. Fabrication of micro holes with high surface quality and integrity by high-speed laser trepanning and electrochemical post-treatment[J]. The International Journal of Advanced Manufacturing Technology, 137, 67-81(2025).

    [16] Geng J F, Wu L, Guo P F et al. Study on high-frequency narrow pulse electrochemical post-processing behavior of Inconel 718 alloy by laser directed energy deposition[J]. Chinese Journal of Lasers, 51, 1002318(2024).

    [17] Rajurkar K P, Sundaram M M, Malshe A P. Review of electrochemical and electrodischarge machining[J]. Procedia CIRP, 6, 13-26(2013).

    [18] Schuster R, Kirchner V, Allongue P et al. Electrochemical micromachining[J]. Science, 289, 98-101(2000).

    [19] Guo P F, Lin X, Li J Q et al. Electrochemical behavior of Inconel 718 fabricated by laser solid forming on different sections[J]. Corrosion Science, 132, 79-89(2018).

    [20] Gitanjali V, Nithya P, Pandiarajan P et al. Performance machinability through electrochemical grinding of strenx steel[J]. Materials Today: Proceedings, 45, 2479-2481(2021).

    [21] Rahi D K, Dubey A K. A study on the effect of voltage on performance characteristics of electrochemical surface grinding of HMMC[J]. Materials Today: Proceedings, 44, 1444-1447(2021).

    [22] Sun Y P. Fundamental experiment research on electrochemical grinding for titanium alloys[D](2014).

    [23] Mogilnikov V A, Chmir M Y, Timofeev Y S et al. Diamond-ECM grinding of sintered hard alloys of WC-Ni[J]. Procedia CIRP, 42, 143-148(2016).

    [24] Kurita T, Endo C, Matsui Y et al. Mechanical/electrochemical complex machining method for efficient, accurate, and environmentally benign process[J]. International Journal of Machine Tools and Manufacture, 48, 1599-1604(2008).

    [25] Jiao F, Ma X S, Bie W B et al. Research status and prospects of electrochemical grinding technology[J]. Acta Armamentarii, 43, 3247-3264(2022).

    [26] Ma X S, Jiao F, Niu Y et al. Modeling of the material removal rate in internal cylindrical plunge electrochemical grinding[J]. Journal of Manufacturing Processes, 92, 89-106(2023).

    [27] Wang X Z, Li H S, Niu S. Simulation and experimental research into combined electrochemical milling and electrochemical grinding machining of Ti40 titanium alloy[J]. International Journal of Electrochemical Science, 15, 11150-11167(2020).

    [28] Qu N S, Zhang Q L, Fang X L et al. Experimental investigation on electrochemical grinding of Inconel 718[J]. Procedia CIRP, 35, 16-19(2015).

    [29] Li H S, Fu S X, Zhang Q L et al. Simulation and experimental investigation of inner-jet electrochemical grinding of GH4169 alloy[J]. Chinese Journal of Aeronautics, 31, 608-616(2018).

    [30] Niu S, Qu N S, Yue X K et al. Effect of tool-sidewall outlet hole design on machining performance in electrochemical mill-grinding of Inconel 718[J]. Journal of Manufacturing Processes, 41, 10-22(2019).

    [31] Guo P F, Lin X, MacDonald D D et al. Unveiling the transpassive film failure of 3D printing transition alloys[J]. Corrosion Science, 204, 110412(2022).

    [32] Speidel A, Mitchell-Smith J, Walsh D A et al. Electrolyte jet machining of titanium alloys using novel electrolyte solutions[J]. Procedia CIRP, 42, 367-372(2016).

    [33] Zhang Z H, Han Q Q, Liu Z Y et al. Influence of the TiB2 content on the processability, microstructure and high-temperature tensile performance of a Ni-based superalloy by laser powder bed fusion[J]. Journal of Alloys and Compounds, 908, 164656(2022).

    [34] Liu W D. Research on mechanism and key processes of electrolytic jet machining of TB6 titanium alloy[D](2020).

    Changshuai Zhai, Pengfei Guo, Fei Wang, Qi Yang, Zhen Wang, Jianfeng Geng, Huijun Wang, Jun Yu, Xin Lin. Effects of Microstructure of Inconel 718 Alloy Melted by Laser Powder Bed and Its Composites on Electrolytic Grinding Surface Quality[J]. Chinese Journal of Lasers, 2025, 52(12): 1202301
    Download Citation