• Acta Photonica Sinica
  • Vol. 53, Issue 8, 0810004 (2024)
Hongde ZHANG, Xin FENG*, Jieming YANG, and Guohang QIU
Author Affiliations
  • School of Mechanical Engineering, Chongqing Key Laboratory of Green Design and Manufacturing of Intelligent Equipment, Chongqing Technology and Business University, Chongqing 400067, China
  • show less
    DOI: 10.3788/gzxb20245308.0810004 Cite this Article
    Hongde ZHANG, Xin FENG, Jieming YANG, Guohang QIU. A Dual Branch Edge Convolution Fusion Network for Infrared and Visible Images[J]. Acta Photonica Sinica, 2024, 53(8): 0810004 Copy Citation Text show less
    Infrared and visible image fusion based on dual-branch convolution network
    Fig. 1. Infrared and visible image fusion based on dual-branch convolution network
    Edge convolution block
    Fig. 2. Edge convolution block
    Convolutional block attention module
    Fig. 3. Convolutional block attention module
    Results of infrared and visible image fusion with different modules
    Fig. 4. Results of infrared and visible image fusion with different modules
    Results of infrared and visible image fusion with different methods
    Fig. 5. Results of infrared and visible image fusion with different methods
    Line chart of evaluation indexes with different methods
    Fig. 6. Line chart of evaluation indexes with different methods
    Radar chart of evaluation indexes with different methods
    Fig. 7. Radar chart of evaluation indexes with different methods
    MethodsMSESFCCPSNRQABFMS-SSIM
    Baseline0.068 90.153 40.517 00.062 30.763 10.000 0
    Without ECB0.594 50.204 50.721 00.558 20.247 00.709 7
    Without CBAM0.415 80.877 40.333 10.393 40.465 60.895 4
    DBECFuse1.000 00.352 00.800 51.000 00.613 50.980 3
    Table 1. Mean of normalized evaluation indexes with different modules
    ParamsMSESFCCPSNRQABFMS-SSIM
    α=0.5,μ=0.10.489 50.082 10.416 20.479 30.774 60.215 7
    α=0.5,μ=1.00.507 90.108 20.570 20.495 50.595 80.301 4
    α=0.5,μ=100.419 20.085 80.550 30.403 60.997 10.126 2
    α=1.0,μ=0.10.520 40.078 80.563 50.506 80.534 40.384 8
    α=1.0,μ=1.00.522 90.089 60.638 20.507 60.516 30.416 8
    α=1.0,μ=100.420 50.067 60.604 10.402 90.841 60.136 8
    α=5.0,μ=0.10.364 51.000 00.328 60.349 90.154 10.920 3
    α=5.0,μ=1.00.959 90.082 70.942 50.951 90.010 00.880 4
    α=5.0,μ=100.717 60.104 00.836 00.694 40.306 30.749 4
    Table 2. Mean of normalized evaluation indexes with different params
    MethodsMSESFCCPSNRQABFMS-SSIM
    MST-SR0.676 10.775 90.702 60.633 70.050 10.710 1
    GTF0.307 60.196 60.172 90.252 20.687 90.400 3
    NestFuse0.527 90.530 60.679 00.447 40.099 20.783 0
    Res2NetFuse0.571 90.363 50.653 90.491 20.186 50.651 3
    SwinFuse0.233 50.559 00.441 70.204 80.676 30.237 1
    SeAFusion0.239 50.820 50.746 90.182 10.063 70.708 5
    PIAFusion0.379 80.611 00.672 30.301 30.131 50.727 2
    FECFusion0.452 60.706 80.663 70.374 30.248 40.751 8
    DBECFuse0.904 60.373 70.997 20.877 30.494 51.000 0
    Table 3. Mean of normalized evaluation indexes with different methods
    MethodsParamsFLOPs
    NestFuse2.732 8 M152.422 7 G
    Res2NetFuse89.617 K18.549 3 G
    SwinFuse336.193 K67.439 4 G
    SeAFusion166.657 0 K21.758 0 G
    PIAFusion1.176 1 M154.023 2 G
    FECFusion144.453 K18.772 1 G
    DBECFuse33.317 K8.907 1 G
    Table 4. Params and FLOPs with different methods
    Hongde ZHANG, Xin FENG, Jieming YANG, Guohang QIU. A Dual Branch Edge Convolution Fusion Network for Infrared and Visible Images[J]. Acta Photonica Sinica, 2024, 53(8): 0810004
    Download Citation