• Photonics Research
  • Vol. 11, Issue 10, 1613 (2023)
Yucong Yang1、2, Yueyang Liu3, Jun Qin1、2, Songgang Cai1、2, Jiejun Su1、2, Peiheng Zhou1、2, Longjiang Deng1、2、4、*, Yang Li3、5、*, and Lei Bi1、2、6、*
Author Affiliations
  • 1National Engineering Research Centre of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 2Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 3State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 4e-mail: denglj@uestc.edu.cn
  • 5e-mail: yli9003@mail.tsinghua.edu.cn
  • 6e-mail: bilei@uestc.edu.cn
  • show less
    DOI: 10.1364/PRJ.495638 Cite this Article Set citation alerts
    Yucong Yang, Yueyang Liu, Jun Qin, Songgang Cai, Jiejun Su, Peiheng Zhou, Longjiang Deng, Yang Li, Lei Bi. Magnetically tunable zero-index metamaterials[J]. Photonics Research, 2023, 11(10): 1613 Copy Citation Text show less
    References

    [1] I. Liberal, N. Engheta. Near-zero refractive index photonics. Nat. Photonics, 11, 149-158(2017).

    [2] N. Kinsey, C. DeVault, A. Boltasseva, V. M. Shalaev. Near-zero-index materials for photonics. Nat. Rev. Mater., 4, 742-760(2019).

    [3] D. I. Vulis, O. Reshef, P. Camayd-Munoz, E. Mazur. Manipulating the flow of light using Dirac-cone zero-index metamaterials. Rep. Prog. Phys., 82, 012001(2019).

    [4] Y. Li, C. T. Chan, E. Mazur. Dirac-like cone-based electromagnetic zero-index metamaterials. Light Sci. Appl., 10, 203(2021).

    [5] M. Silveirinha, N. Engheta. Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. Phys. Rev. Lett., 97, 157403(2006).

    [6] A. Alù, M. G. Silveirinha, A. Salandrino, N. Engheta. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B, 75, 155410(2007).

    [7] R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, D. R. Smith. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies. Phys. Rev. Lett., 100, 023903(2008).

    [8] H. Suchowski, K. O’Brien, J. Wong Zi, A. Salandrino, X. Yin, X. Zhang. Phase mismatch–free nonlinear propagation in optical zero-index materials. Science, 342, 1223-1226(2013).

    [9] M. Z. Alam, I. D. Leon, R. W. Boyd. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science, 352, 795-797(2016).

    [10] J. R. Gagnon, O. Reshef, D. H. G. Espinosa, M. Z. Alam, D. I. Vulis, E. N. Knall, J. Upham, Y. Li, K. Dolgaleva, E. Mazur, R. W. Boyd. Relaxed phase-matching constraints in zero-index waveguides. Phys. Rev. Lett., 128, 203902(2022).

    [11] J. Xu, G. Song, Z. Zhang, Y. Yang, H. Chen, M. S. Zubairy, S. Zhu. Unidirectional single-photon generation via matched zero-index metamaterials. Phys. Rev. B, 94, 220103(2016).

    [12] O. Mello, Y. Li, S. A. Camayd-Muñoz, C. DeVault, M. Lobet, H. Tang, M. Lonçar, E. Mazur. Extended many-body superradiance in diamond epsilon near-zero metamaterials. Appl. Phys. Lett., 120, 061105(2022).

    [13] J. B. Khurgin, R. S. Tucker. Slow Light: Science and Applications(2018).

    [14] Y. Yang, J. Lu, A. Manjavacas, T. S. Luk, H. Liu, K. Kelley, J.-P. Maria, E. L. Runnerstrom, M. B. Sinclair, S. Ghimire, I. Brener. High-harmonic generation from an epsilon-near-zero material. Nat. Phys., 15, 1022-1026(2019).

    [15] W. Jia, M. Liu, Y. Lu, X. Feng, Q. Wang, X. Zhang, Y. Ni, F. Hu, M. Gong, X. Xu, Y. Huang, W. Zhang, Y. Yang, J. Han. Broadband terahertz wave generation from an epsilon-near-zero material. Light Sci. Appl., 10, 11(2021).

    [16] E. J. Vesseur, T. Coenen, H. Caglayan, N. Engheta, A. Polman. Experimental verification of n = 0 structures for visible light. Phys. Rev. Lett., 110, 013902(2013).

    [17] Z. Zhou, Y. Li. Effective epsilon-near-zero (ENZ) antenna based on transverse cutoff mode. IEEE Trans. Antennas Propag., 67, 2289-2297(2019).

    [18] X. Qin, W. Sun, Z. Zhou, P. Fu, H. Li, Y. Li. Waveguide effective plasmonics with structure dispersion. Nanophotonics, 11, 1659-1676(2022).

    [19] S. Yun, Z. H. Jiang, Q. Xu, Z. Liu, D. H. Werner, T. S. Mayer. Low-loss impedance-matched optical metamaterials with zero-phase delay. ACS Nano, 6, 4475-4482(2012).

    [20] I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, N. Engheta. Photonic doping of epsilon-near-zero media. Science, 355, 1058-1062(2017).

    [21] H. Tang, C. DeVault, S. A. Camayd-Munoz, Y. Liu, D. Jia, F. Du, O. Mello, D. I. Vulis, Y. Li, E. Mazur. Low-loss zero-index materials. Nano Lett., 21, 914-920(2021).

    [22] X. Huang, Y. Lai, Z. H. Hang, H. Zheng, C. T. Chan. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater., 10, 582-586(2011).

    [23] M. Dubois, C. Shi, X. Zhu, Y. Wang, X. Zhang. Observation of acoustic Dirac-like cone and double zero refractive index. Nat. Commun., 8, 14871(2017).

    [24] C. Xu, G. Ma, Z. G. Chen, J. Luo, J. Shi, Y. Lai, Y. Wu. Three-dimensional acoustic double-zero-index medium with a fourfold degenerate Dirac-like point. Phys. Rev. Lett., 124, 074501(2020).

    [25] P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, J. Valentine. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photonics, 7, 791-795(2013).

    [26] Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, E. Mazur. On-chip zero-index metamaterials. Nat. Photonics, 9, 738-742(2015).

    [27] L. Vertchenko, N. Akopian, A. V. Lavrinenko. Epsilon-near-zero grids for on-chip quantum networks. Sci. Rep., 9, 6053(2019).

    [28] T. Dong, J. Liang, S. Camayd-Munoz, Y. Liu, H. Tang, S. Kita, P. Chen, X. Wu, W. Chu, E. Mazur, Y. Li. Ultra-low-loss on-chip zero-index materials. Light Sci. Appl., 10, 10(2021).

    [29] L. Vertchenko, C. DeVault, R. Malureanu, E. Mazur, A. Lavrinenko. Near-zero index photonic crystals with directive bound states in the continuum. Laser Photonics Rev., 15, 2000559(2021).

    [30] P. Camayd-Muñoz. Integrated Zero-index Metamaterials(2016).

    [31] M. Memarian, G. V. Eleftheriades. Dirac leaky-wave antennas for continuous beam scanning from photonic crystals. Nat. Commun., 6, 5855(2015).

    [32] Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, C. M. Soukoulis. Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices. Adv. Mater., 27, 6187-6194(2015).

    [33] R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N.-H. Shen, T. Koschny, C. M. Soukoulis. Temperature-controlled chameleonlike cloak. Phys. Rev. X, 7, 011033(2017).

    [34] H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light Sci. Appl., 7, 50(2018).

    [35] F. Zhang, C. Li, Y. Fan, R. Yang, N. H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, C. M. Soukoulis. Phase-modulated scattering manipulation for exterior cloaking in metal-dielectric hybrid metamaterials. Adv. Mater., 31, 1903206(2019).

    [36] J. B. Khurgin. Slow light in various media: a tutorial. Adv. Opt. Photonics, 2, 287-318(2010).

    [37] J. B. Khurgin, M. Clerici, V. Bruno, L. Caspani, C. DeVault, J. Kim, A. Shaltout, A. Boltasseva, V. M. Shalaev, M. Ferrera, D. Faccio, N. Kinsey. Adiabatic frequency shifting in epsilon-near-zero materials: the role of group velocity. Optica, 7, 226-231(2020).

    [38] J. B. Khurgin, M. Clerici, N. Kinsey. Fast and slow nonlinearities in epsilon-near-zero materials. Laser Photonics Rev., 15, 2000291(2020).

    [39] N. Xiang, Q. Cheng, J. Zhao, T. J. Cui, W. X. Jiang, H. F. Ma. A switchable zero index metamaterial. 3rd Asia-Pacific Conference on Antennas and Propagation, 1050-1052(2014).

    [40] N. Xiang, Q. Cheng, J. Zhao, T. J. Cui, H. F. Ma, W. X. Jiang. Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes. Appl. Phys. Lett., 104, 053504(2014).

    [41] A. R. Davoyan, N. Engheta. Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity. Phys. Rev. Lett., 111, 257401(2013).

    [42] X. Cai, R. Tang, H. Zhou, Q. Li, S. Ma, D. Wang, T. Liu, X. Ling, W. Tan, Q. He, S. Xiao, L. Zhou. Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Adv. Photonics, 3, 036003(2021).

    [43] Y. Luo, C. H. Chu, S. Vyas, H. Y. Kuo, Y. H. Chia, M. K. Chen, X. Shi, T. Tanaka, H. Misawa, Y. Y. Huang, D. P. Tsai. Varifocal metalens for optical sectioning fluorescence microscopy. Nano Lett., 21, 5133-5142(2021).

    [44] Q. Li, X. Cai, T. Liu, M. Jia, Q. Wu, H. Zhou, H. Liu, Q. Wang, X. Ling, C. Chen, F. Ding, Q. He, Y. Zhang, S. Xiao, L. Zhou. Gate-tuned graphene meta-devices for dynamically controlling terahertz wavefronts. Nanophotonics, 11, 2085-2096(2022).

    [45] A. Govdeli, M. C. Sarihan, U. Karaca, S. Kocaman. Integrated optical modulator based on transition between photonic bands. Sci. Rep., 8, 1619(2018).

    [46] A. Gövdeli, S. Kocaman, M. Erdil, G. T. Reed, A. P. Knights. Tunable integrated optical modulator with dynamical photonic band transition of photonic crystals. Proc. SPIE, 10923, 109231R(2019).

    [47] M. Yildirim, A. Gövdeli, S. Kocaman, S. M. García-Blanco, P. Cheben. Integrated optical modulators with zero index metamaterials based on photonic crystal slab waveguides. Proc. SPIE, 10921, 1092125(2019).

    [48] Y. Zeng, U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Y. Chong, Q. J. Wang. Electrically pumped topological laser with valley edge modes. Nature, 578, 246-250(2020).

    [49] I. V. Shadrivov, M. Lapine, Y. S. Kivshar. Nonlinear, Tunable and Active Metamaterials(2015).

    [50] Z. Guo, F. Wu, C. Xue, H. Jiang, Y. Sun, Y. Li, H. Chen. Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect. J. Appl. Phys., 124, 103104(2018).

    [51] X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, Y. D. Chong. Realization of a magneto-optical near-zero index medium by an unpaired Dirac point. Phys. Rev. B, 98, 205115(2018).

    [52] A. R. Davoyan, N. Engheta. Nonreciprocal emission in magnetized epsilon-near-zero metamaterials. ACS Photonics, 6, 581-586(2019).

    [53] T. Liu, N. Kobayashi, K. Ikeda, Y. Ota, S. Iwamoto. Topological band gaps enlarged in epsilon-near-zero magneto-optical photonic crystals. ACS Photonics, 9, 1621-1626(2022).

    [54] N. Engheta. Pursuing near-zero response. Science, 340, 286-287(2013).

    [55] R. Maas, J. Parsons, N. Engheta, A. Polman. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat. Photonics, 7, 907-912(2013).

    [56] P. Zhou, G. G. Liu, Y. Yang, Y. H. Hu, S. Ma, H. Xue, Q. Wang, L. Deng, B. Zhang. Observation of photonic antichiral edge states. Phys. Rev. Lett., 125, 263603(2020).

    [57] N. Wang, R.-Y. Zhang, C. T. Chan, G. P. Wang. Effective medium theory for a photonic pseudospin-1/2  system. Phys. Rev. B, 102, 094312(2020).

    [58] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [59] S.-L. Chua, L. Lu, J. Bravo-Abad, J. D. Joannopoulos, M. Soljačić. Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point. Opt. Lett., 39, 2072-2075(2014).

    [60] P. Zhou, G. G. Liu, X. Ren, Y. Yang, H. Xue, L. Bi, L. Deng, Y. Chong, B. Zhang. Photonic amorphous topological insulator. Light Sci. Appl., 9, 133(2020).

    [61] D. M. Pozar. Microwave Engineering(2011).

    [62] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    [63] Q. Yan, R. Liu, Z. Yan, B. Liu, H. Chen, Z. Wang, L. Lu. Experimental discovery of nodal chains. Nat. Phys., 14, 461-464(2018).

    [64] H. Cheng, Y. Sha, R. Liu, C. Fang, L. Lu. Discovering topological surface states of Dirac points. Phys. Rev. Lett., 124, 104301(2020).

    [65] Microwave Applications. Product information: microwave waveguide switches.

    [66] . Ferrite based RF switches.

    [67] . Ferrite beam hopping.

    Yucong Yang, Yueyang Liu, Jun Qin, Songgang Cai, Jiejun Su, Peiheng Zhou, Longjiang Deng, Yang Li, Lei Bi. Magnetically tunable zero-index metamaterials[J]. Photonics Research, 2023, 11(10): 1613
    Download Citation