• Chip
  • Vol. 3, Issue 2, 100089 (2024)
Li-Hua Zhang1,2, Bang Liu1,2, Zong-Kai Liu1,2, Zheng-Yuan Zhang1,2..., Shi-Yao Shao1,2, Qi-Feng Wang1,2, Yu Ma1,2, Tian-Yu Han1,2, Guang-Can Guo1,2, Dong-Sheng Ding1,2,* and Bao-Sen Shi1,2|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.1016/j.chip.2024.100089 Cite this Article
    Li-Hua Zhang, Bang Liu, Zong-Kai Liu, Zheng-Yuan Zhang, Shi-Yao Shao, Qi-Feng Wang, Yu Ma, Tian-Yu Han, Guang-Can Guo, Dong-Sheng Ding, Bao-Sen Shi. Ultra-wide dual-band Rydberg atomic receiver based on space division multiplexing radio-frequency chip modules[J]. Chip, 2024, 3(2): 100089 Copy Citation Text show less
    References

    [1] L.G. Spitler, et al.. A repeating fast radio burst. Nature, 531 (2016), pp. 202-205.

    [2] M.J. Wooster, et al.. Satellite remote sensing of active fires: history and current status, applications and future requirements. Remote Sens. Environ., 267 (2021), p. 112694.

    [3] K.-L. Du, M.N. Swamy.

    [4] S.A. Busari, S. Mumtaz, S. Al-Rubaye, J. Rodriguez. 5G millimeter-wave mobile broadband: performance and challenges. IEEE Commun. Mag., 56 (2018), pp. 137-143.

    [5] P. van Dorp, R. Ebeling, A.G. Huizing. High resolution radar imaging using coherent multiband processing techniques.

    [6] C.-X. Wang, et al.. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag., 52 (2014), pp. 122-130.

    [7] X. Xuan, F. Yang, C. Liu. Design of multioctave high-efficiency power amplifier based on extended continuous Class-B/J modes. Int. J. RF Microw. Computer-Aided Eng., 29 (2019), Article e21899.

    [8] S.Y. Zheng, Z.W. Liu, X.Y. Zhang, X.Y. Zhou, W.S. Chan. Design of ultrawideband high-efficiency extended continuous class-F power amplifier. IEEE Trans. Ind. Electron., 65 (2018), pp. 4661-4669.

    [9] F. You, S. He, T. Cao, X. Tang. Performance study of a subclass class e power amplifier in comparison with the typical one. 2008 International Conference on Communications, Circuits and Systems (IEEE, 2008), pp. 1342-1345.

    [10] M. Jing, et al.. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys., 16 (2020), pp. 911-915.

    [11] M. Cai, Z. Xu, S. You, H. Liu. Sensitivity improvement and determination of Rydberg atom-based microwave sensor. Photonics, 9 (2022), p. 250.

    [12] D.-S. Ding, et al.. Enhanced metrology at the critical point of a many-body Rydberg atomic system. Nat. Phys., 18 (2022), pp. 1447-1452.

    [13] D.A. Anderson, R.E. Sapiro, G. Raithel. A self-calibrated SI-traceable Rydberg atom-based radio frequency electric field probe and measurement instrument. IEEE Trans. Antennas Propag., 69 (2021), pp. 5931-5941.

    [14] J.A. Sedlacek, et al.. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys., 8 (2012), pp. 819-824.

    [15] D.H. Meyer, Z.A. Castillo, K.C. Cox, P.D. Kunz. Assessment of Rydberg atoms for wideband electric field sensing. J. Phys. B: At. Mol. Opt. Phys., 53 (2020), Article 034001.

    [16] B. Liu, et al.. Highly sensitive measurement of a megahertz rf electric field with a Rydberg-atom sensor. Phys. Rev. Appl., 18 (2022), Article 014045.

    [17] C. Sayrin, et al.. Real-time quantum feedback prepares and stabilizes photon number states. Nature, 477 (2011), pp. 73-77.

    [18] D.H. Meyer, P.D. Kunz, K.C. Cox. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz. Phys. Rev. Appl., 15 (2021), Article 014053.

    [19] Z.-K. Liu, et al.. Deep learning enhanced Rydberg multifrequency microwave recognition. Nat. Commun., 13 (2022), p. 1997.

    [20] B. Liu, et al.. Electric field measurement and application based on Rydberg atoms. Electromagn. Sci., 1 (2023), pp. 1-16.

    [21] J. Hu, et al.. Continuously tunable radio frequency electrometry with Rydberg atoms. Appl. Phys. Lett., 121 (2022), Article 014002.

    [22] L.-H. Zhang, et al.. Rydberg microwave-frequency-comb spectrometer. Phys. Rev. Appl., 18 (2022), Article 014033.

    [23] X.-H. Liu, et al.. Continuous-frequency microwave heterodyne detection in an atomic vapor cell. Phys. Rev. Appl., 18 (2022), Article 054003.

    [24] Y. Cui, et al.. Extending bandwidth sensitivity of Rydberg-atom-based microwave electrometry using an auxiliary microwave field. Phys. Rev. A, 107 (2023), Article 043102.

    [25] S. Berweger, et al.. Rydberg-state engineering: investigations of tuning schemes for continuous frequency sensing. Phys. Rev. Appl., 19 (2023), Article 044049.

    [26] C.S. Adams, J.D. Pritchard, J.P. Shaffer. Rydberg atom quantum technologies. J. Phys. B: At. Mol. Opt. Phys., 53 (2019), Article 012002.

    [27] N. Haider, D. Caratelli, A.G. Yarovoy. Recent developments in reconfigurable and multiband antenna technology. Int. J. Antennas Propag., 2013 (2013), p. 869170.

    [28] E. Al Abbas, M. Ikram, A.T. Mobashsher, A. Abbosh. Mimo antenna system for multi-band millimeter-wave 5g and wideband 4g mobile communications. IEEE Access, 7 (2019), pp. 181916-181923.

    [29] Y.F. Cao, S.W. Cheung, T.I. Yuk. A multiband slot antenna for gps/wimax/wlan systems. IEEE Trans. Antennas Propag., 63 (2015), pp. 952-958.

    [30] D.A. Anderson, R.E. Sapiro, G. Raithel. An atomic receiver for am and fm radio communication. IEEE Trans. Antennas Propag., 69 (2021), pp. 2455-2462.

    [31] C. Holloway, et al.. A multiple-band Rydberg atom-based receiver: Am/fm stereo reception. IEEE Antennas Propag. Mag., 63 (2021), pp. 63-76.

    [32] Y. Du, et al.. Realization of multiband communications using different Rydberg final states. AIP Adv., 12 (2022), p. 065118.

    [33] H. Zou, et al.. Atomic receiver by utilizing multiple radio-frequency coupling at rydberg states of rubidium. Appl. Sci., 10 (2020), p. 1346.

    [34] D.H. Meyer, J.C. Hill, P.D. Kunz, K.C. Cox. Simultaneous multiband demodulation using a Rydberg atomic sensor. Phys. Rev. Appl., 19 (2023), Article 014025.

    [35] A.K. Mohapatra, T.R. Jackson, C.S. Adams. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett., 98 (2007), p. 113003.

    [36] N. Šibalić, J.D. Pritchard, C.S. Adams, K.J. Weatherill. Arc: an open-source library for calculating properties of alkali Rydberg atoms. Comput. Phys. Commun., 220 (2017), pp. 319-331.

    [37] Y.-Y. Jau, T. Carter. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz. Phys. Rev. Appl., 13 (2020), Article 054034.

    [38] S.M. Bohaichuk, D. Booth, K. Nickerson, H. Tai, J.P. Shaffer. Origins of Rydberg-atom electrometer transient response and its impact on radio-frequency pulse sensing. Phys. Rev. Appl., 18 (2022), Article 034030.

    [39] B. Yang, et al.. High-sensitive microwave electrometry with enhanced instantaneous bandwidth.

    [40] M. Tuchler, V. Schwarz, A. Huber. Location accuracy of an uwb localization system in a multi-path environment.

    [41] C.T. Fancher, D.R. Scherer, M.C.S. John, B.L.S. Marlow. Rydberg atom electric field sensors for communications and sensing. IEEE Trans. Quantum Eng., 2 (2021), pp. 1-13.

    [42] D.M. Walker, L.L. Brown, S.D. Hogan. Electrometry of a single resonator mode at a Rydberg-atom–superconducting-circuit interface. Phys. Rev. A, 105 (2022), p. 022626.

    [43] K. Yang, et al.. Local oscillator port embedded field enhancement resonator for Rydberg atomic heterodyne technique. EPJ Quantum Technol., 10 (2023), p. 23.

    [44] H. Nyquist. Thermal agitation of electric charge in conductors. Phys. Rev., 32 (1928), pp. 110-113.

    [45] C.T. Stelzried. Microwave thermal noise standards. IEEE Trans. Microw. Theory Tech., 16 (1968), pp. 646-655.

    [46] H.-T. Tu, et al.. Approaching the standard quantum limit of a Rydberg-atom microwave electrometer.

    [47] C.T. Fancher, D.R. Scherer, M.C.S. John, B.L.S. Marlow. Rydberg atom electric field sensors for communications and sensing. IEEE Trans. Quantum Eng., 2 (2021), pp. 1-13.

    [48] G. Santamaria-Botello, S. Verploegh, E. Bottomley, Z. Popovic. Comparison of noise temperature of Rydberg-atom and electronic microwave receivers.

    [49] H.F. Ma, X. Shen, Q. Cheng, W.X. Jiang, T.J. Cui. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev., 8 (2014), pp. 146-151.

    [50] Y.-Y. Jau, T. Carter. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz. Phys. Rev. Appl., 13 (2020), Article 054034.

    Li-Hua Zhang, Bang Liu, Zong-Kai Liu, Zheng-Yuan Zhang, Shi-Yao Shao, Qi-Feng Wang, Yu Ma, Tian-Yu Han, Guang-Can Guo, Dong-Sheng Ding, Bao-Sen Shi. Ultra-wide dual-band Rydberg atomic receiver based on space division multiplexing radio-frequency chip modules[J]. Chip, 2024, 3(2): 100089
    Download Citation