• Acta Photonica Sinica
  • Vol. 51, Issue 5, 0551301 (2022)
Guanghao RUI1、2 and Qiwen ZHAN1、*
Author Affiliations
  • 1School of Optical-electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • 2Advanced Photonics Center,Southeast University,Nanjing 210096,China
  • show less
    DOI: 10.3788/gzxb20225105.0551301 Cite this Article
    Guanghao RUI, Qiwen ZHAN. Nanophotonic Methods for Chiral Sensing and Characterization(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551301 Copy Citation Text show less
    References

    [1] A HAYAT, J P B MUELLER, F CAPASSO. Lateral chirality-sorting optical forces. Proceedings of the National Academy of Sciences of the United States of America, 112, 13190-13194(2015).

    [2] J LEKNER. Optical properties of isotropic chiral media. Pure and Applied Optics, 5, 417-443(1996).

    [3] Meng QIU, Lei ZHANG, Zhixiang TANG et al. 3D metaphotonic nanostructures with intrinsic chirality. Advanced Functional Materials, 28, 1803147(2018).

    [4] J MUN, M KIM, Y YANG et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light: Science & Applications, 9, 139(2020).

    [5] L PASTEUR. Research on the relationships between crystalline form, chemical composition, and the sense of rotatory polarization. Annales de Chimie Et de Physique, 24, 442-459(1848).

    [6] N J GREENFIELD. Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1, 2876-2890(2006).

    [7] J T PELTON, L R MCLEAN. Spectroscopic methods for analysis of protein secondary structure. Analytical Biochemistry, 277, 167-176(2000).

    [8] S M KELLY, N C PRICE. The use of circular dichroism in the investigation of protein structure and function. Current Protein & Peptide Science, 1, 349-384(2000).

    [9] J T YANG, C S WU, H M MARTINEZ. Calculation of protein conformation from circular dichroism. Methods in Enzymology, 130, 208-269(1986).

    [10] G D FASMAN. Circular dichroism and the conformational analysis of biomolecules(1996).

    [11] C F BOPHREN, D R HUFFMAN. Absorption and scattering of light by small particles(1998).

    [12] C BUSTAMANTE, I TINOCO, M F MAESTRE. Circular differential scattering can be an important part of the circular-dichroism of macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 80, 3568-3572(1983).

    [13] Y H PAO, J R ONSTOTT. Reflection circular dichroism of naturally optically active substances. International Journal of Quantum Chemistry, 3, 119-128(1969).

    [14] M L SOLOMON, A A E SALEH, L V POULIKAKOS et al. Nanophotonic platforms for chiral sensing and separation. Accounts of Chemical Research, 53, 588-598(2020).

    [15] J KUMAR, L M LIZ-MARZAN. Recent advances in chiral plasmonics towards biomedical applications. Bulletin of the Chemical Society of Japan, 92, 30-37(2019).

    [16] P W TANG, C Y TAI. Plasmonically enhanced enantioselective nanocolorimetry. ACS Sensors, 5, 637-644(2020).

    [17] S LINK, M A EL-SAYED. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. The Journal of Physical Chemistry B, 103, 8410-8426(1999).

    [18] B M MAOZ, Y CHAIKIN, A B TESLER et al. Amplification of chiroptical activity of chiral biomolecules by surface plasmons. Nano Letters, 13, 1203-1209(2013).

    [19] J M SLOCIK, A O GOVOROV, R P NAIK. Plasmonic circular dichroism of peptide-functionalized gold nanoparticles. Nano Letters, 11, 701-705(2011).

    [20] Y TANG, A E COHEN. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science, 332, 333-336(2011).

    [21] I V LINDELL, A H SIHVOLA, S A TRETYAKOV et al. Electromagnetic waves in chiral and bi-isotropic media(1994).

    [22] A ASHKIN, J M DZIEDZIC, J E BJORKHOLM et al. Observation of a single-beam gradient force optical trap for dielectric particles. Optical Letters, 11, 288-290(1986).

    [23] D G GRIER. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [24] S B WANG, C T CHAN. Lateral optical force on chiral particles near a surface. Nature Communications, 5, 3307(2014).

    [25] A O GOVOROV, Zhiyuan FAN, P HERNANDEZ et al. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Letter, 10, 1374-1382(2010).

    [26] B M MAOZ, R V D van der WEEGEN, Zhiyuan FAN et al. Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies. Journal of the American Chemical Society, 134, 17807-17813(2012).

    [27] Yiqiao TANG, A E COHEN. Optical chirality and its interaction with matter. Physical Review Letters, 104, 163901(2010).

    [28] E HENDRY, T CARPY, J JOHNSTON et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotechnology, 5, 783-787(2010).

    [29] S YOO, Q PARK. Chiral light-matter interaction in optical resonators. Physical Review Letters, 114, 203003(2015).

    [30] E HENDRY, R V MIKHAYLOVSKIY, L D BARRON et al. Chiral electromagnetic fields generated by arrays of nanoslits. Nano Letters, 12, 3640-3644(2012).

    [31] N A ABDULRAHMAN, Zheng FAN, T TONOOKA et al. Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures. Nano Letters, 12, 977-983(2012).

    [32] S LEE, S YOO, Q H PARK. Microscopic origin of surface-enhanced circular dichroism. ACS Photonics, 4, 2047-2052(2017).

    [33] Shuai HOU, Hui ZHANG, Jiao YAN et al. Plasmonic circular dichroism in side-by-side oligomers of gold nanorods: the influence of chiral molecule location and interparticle distance. Physical Chemistry Chemical Physics, 17, 8187-8193(2015).

    [34] V A GERARD, Y K GUN’KO, E DEFRANCQ et al. Plasmon-induced response of oligonucleotide-conjugated metal nanoparticles. Chemical Communications, 47, 7383-7385(2011).

    [35] Xibo SHEN, Pengfei ZHAN, A KUZYK et al. 3D plasmonic chiral colloids. Nanoscale, 6, 2077-2081(2014).

    [36] Xiang LAN, Xu ZHOU, L A MCCARTHY et al. DNA-enabled chiral gold nanoparticle-chromophore hybrid structure with resonant plasmon-exciton coupling gives unusual and strong circular dichroism. Journal of the American Chemical Society, 141, 19336-19341(2019).

    [37] Fang LU, Ye TIAN, Mingzhao LIU et al. Discrete nanocubes as plasmonic reporters of molecular chirality. Nano Letters, 13, 3145-3151(2013).

    [38] Hui ZHANG, A O GOVOROV. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals. Physical Review B, 87, 075410(2013).

    [39] M L NESTEROV, Xinghui YIN, M SCHÄFERLING et al. The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy. ACS Photonics, 3, 578-583(2016).

    [40] L M KNEER, E M ROLLER, L V BESTEIRO et al. Circular dichroism of chiral molecules in DNA-assembled plasmonic hotspots. ACS Nano, 12, 9110-9115(2018).

    [41] D M LIPKIN. Existence of a new conservation law in electromagnetic theory. Journal of Mathematical Physics, 5, 696-700(1964).

    [42] A GARCIA-ETXARRI, J A DIONNE. Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Physical Review B, 87, 235409(2013).

    [43] K C van KRUINING, R P CAMERON, J B GÖTTE. Superpositions of up to six plane waves without electric-field interferenc. Optica, 5, 1091-1098(2018).

    [44] Haifeng HU, Qiaoqiang GAN, Qiwen ZHAN. Nondiffracting superchiral optical needle for circular dichroism imaging of sparse subdiffraction objects. Physical Review Letters, 122, 223901(2019).

    [45] Guanghao RUI, Xinyuan YING, Shuting ZOU et al. Enhanced circular dichroism of sparse nanoobjects by localized superchiral optical field. Journal of Optics, 23, 065002(2021).

    [46] P BIAGIONI, J S HUANG, B HECHT. Nanoantennas for visible and infrared radiation. Reports on Progress Physics, 75, 024402(2012).

    [47] V AMENDOLA, R PILOT, M FRASCONI et al. Surface plasmon resonance in gold nanoparticles: A review. Journal of Physics-Condensed Matter, 29, 203002(2017).

    [48] M SCHÄFERLINGDE, D DREGELY, M HENTSCHEL et al. Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures. Physical Review X, 2, 031010(2012).

    [49] M SCHÄFERLINGDE, Xinghui YIN, N ENGHETA et al. Helical plasmonic nanostructures as prototypical chiral near-field sources. ACS Photonics, 1, 530-537(2014).

    [50] R TULLIUS, A S KARIMULLAH, M RODIER et al. “Superchiral” spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures. Journal of American Chemical Society, 137, 8380-8383(2015).

    [51] A S KARIMULLAH, C JACK, R TULLIUS et al. Disposable plasmonics: plastic templated plasmonic metamaterials with tunable chirality. Advanced Materials, 27, 5610-5616(2015).

    [52] C JACK, A S KARIMULLAH, R LEYMAN et al. Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures. Nano Letters, 16, 5806-5814(2016).

    [53] Yang ZHAO, A N ASKARPOUR, Liuyang SUN et al. Chirality detection of enantiomers using twisted optical metamaterials. Nature Communications, 8, 14180(2017).

    [54] J GARCIA-GUIRADO, M SVEDENDAHL, J PUIGDOLLERS et al. Enantiomer-selective molecular sensing using racemic nanoplasmonic arrays. Nano Letters, 18, 6279-6285(2018).

    [55] E S A GOERLITZER, R MOHAMMADI, S NECHAYEV et al. Chiral surface lattice resonances. Advanced Materials, 32, 2001330(2020).

    [56] J K GANSEL, M THIEL, M S RILL et al. Gold helix photonic metamaterial as broadband circular polarizer. Science, 325, 1513-1515(2009).

    [57] Y HOU, H M LEUNG, C T CHAN et al. Ultrabroadband optical superchirality in a 3D stacked-patch plasmonic metamaterial designed by two-step glancing angle deposition. Advanced Functional Materials, 26, 7807-7816(2016).

    [58] A HORRER, Yinping ZHANG, D GERARD et al. Local optical chirality induced by near-field mode interference in achiral plasmonic metamolecules. Nano Letters, 20, 509-516(2019).

    [59] E PETRONIJEVIC, E M SANDOVAL, M RAMEZANI et al. Extended chiro-optical near-field response of achiral plasmonic lattices. Journal of Physical Chemistry C, 123, 23620-23627(2019).

    [60] Guanghao RUI, Haifeng HU, M SINGER et al. Symmetric meta-absorber-induced superchirality. Advanced Optical Materials, 7, 1901038(2019).

    [61] M TERAKAWA, S TAKEDA, Y TANAKA et al. Enhanced localized near field and scattered far field for surface nanophotonics applications. Progress in Quantum Electronics, 36, 194-271(2012).

    [62] C S HO, A GARCIA-ETXARRI, Yang ZHAO et al. Enhancing enantioselective absorption using dielectric nanospheres. ACS Photonics, 4, 197-203(2017).

    [63] D VESTLER, B M ASSAF, G MARKOVICH. Enhancement of circular dichroism of a chiral material by dielectric nanospheres. Journal of Physical Chemistry C, 123, 5017-5022(2019).

    [64] J MUN, J RHO. Surface-enhanced circular dichroism by multipolar radiative coupling. Optics Letters, 43, 2856-2859(2018).

    [65] M L SOLOMON, J HU, M LAWRENCE et al. Enantiospecific optical enhancement of chiral sensing and separation with dielectric metasurfaces. ACS Photonics, 6, 43-49(2019).

    [66] J GARCIA-GUIRADO, M SVEDENDAHL, M PUIGDOLLERS et al. Enhanced chiral sensing with dielectric nanoresonators. Nano Letters, 20, 585-591(2020).

    [67] Kan YAO, Yongmin LIU. Enhancing circular dichroism by chiral hotspots in silicon nanocube dimers. Nanoscale, 10, 8779-8786(2018).

    [68] Xin ZHAO, B M REINHARD. Switchable chiroptical hot-spots in silicon nanodisk dimers. ACS Photonics, 6, 1981-1989(2019).

    [69] E MOHAMMADI, A TAVAKOLI, P DEHKHODA et al. Accessible superchiral near-fields driven by tailored electric and magnetic resonances in all-dielectric nanostructures. ACS Photonics, 6, 1939-1946(2019).

    [70] J HU, M LAWENCE, J A DIONNE. High quality factor dielectric metasurfaces for ultraviolet circular dichroism spectroscopy. ACS Photonics, 7, 36-42(2020).

    [71] Kan YAO, Yuebing ZHENG. Near-ultraviolet dielectric metasurfaces: from surface-enhanced circular dichroism spectroscopy to polarization-preserving mirrors. Journal of Physical Chemistry C, 123, 11814-11822(2019).

    [72] E PETRONIJEVIC, M CENTINI, A BELARDINI et al. Chiral near-field manipulation in Au-GaAs hybrid hexagonal nanowires. Optics Express, 25, 14148-14157(2017).

    [73] Yongkai WANG, Qijing WANG, Qianying WANG et al. Dynamically adjustable-induced THz circular dichroism and biosensing application of symmetric silicon-graphene-metal composite nanostructures. Optical Express, 29, 8087-8097(2021).

    [74] E MOHAMMADI, A TITTL, K L TSAKMAKIDIS et al. Dual nanoresonators for ultrasensitive chiral detection. ACS Photonics, 8, 1754-1762(2021).

    [75] K SVOBODA, S M BLOCK. Optical trapping of metallic Rayleigh particles. Optics Letters, 19, 930-932(1994).

    [76] T RODGERS, S SHOJI, Z SEKKAT et al. Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam. Physical Review Letters, 101, 127402(2008).

    [77] L JAUFFRED, A C RICHARDSON, L B ODDERSHEDE. Three-dimensional optical control of individual quantum dots. Nano Letters, 8, 3376-3380(2008).

    [78] O BRZOBOHATÝ, V KARÁSEK, M ŠILER et al. Experimental demonstration of optical transport, sorting and self-arrangement using a “tractor beam”. Nature Photonics, 7, 123-127(2013).

    [79] Jun CHEN, J NG, Zhifang LIN et al. Optical pulling force. Nature Photonics, 5, 531-534(2011).

    [80] V SHVEDOV, A R DAVOYAN, C HNATOVSKY et al. A long-range polarization-controlled optical tractor beam. Nature Photonics, 8, 846-850(2014).

    [81] P HANSEN, Yuxin ZHENG, J RYAN et al. Nano-optical conveyor belt, part I: theory. Nano Letters, 14, 2965-2970(2014).

    [82] Zhiwei KANG, Haifei LU, Jiajie CHEN et al. Plasmonic graded nano-disks as nano-optical conveyor belt. Optics Express, 22, 19567-19572(2014).

    [83] P C CHAUMET, M NIETO-VESPERINAS. Time-averaged total force on a dipolar sphere in an electromagnetic field. Optics Letters, 25, 1065-1067(2000).

    [84] A LAKHTAKIA, V K VARADAN, V V VARADAN. Time-harmonic electromagnetic fields in chiral media(1989).

    [85] M YOKOTA, S HE, T TAKENAKA. Scattering of a Hermite-Gaussian beam field by a chiral sphere. Journal of the Optical Society of America A, 18, 1681-1689(2001).

    [86] P C CHAUMET, A RAHMANI. Electromagnetic force and torque on magnetic and negative-index scatterers. Optics Express, 17, 2224-2234(2009).

    [87] M NIETO-VESPERINAS, J J SÁENZ, R GÓMEZ-MEDINA et al. Optical forces on small magnetodielectric particles. Optics Express, 18, 11428-11443(2010).

    [88] Huajin CHEN, Neng WANG, Wanli LU et al. Tailoring azimuthal optical force on lossy chiral particles in Bessel beams. Physical Review A, 90, 043850(2014).

    [89] Manman LI, Shaohui YAN, Yanan ZHANG et al. Optical sorting of small chiral particles by tightly focused vector beams. Physical Review A, 99, 033825(2019).

    [90] I LIBERAL, I EDERRA, R GONZALO et al. Near-field electromagnetic trapping through curl-spin forces. Physical Review A, 87, 063807(2013).

    [91] J D JACKSON. Classical electrodynamics(2013).

    [92] Huajin CHEN, Wanli LU, Xinning YU et al. Optical torque on small chiral particles in generic optical fields. Optics Express, 25, 32867-32878(2017).

    [93] K Y BLIOKH, A Y BEKSHAEV, F NORI. Extraordinary momentum and spin in evanescent waves. Nature Communications, 5, 3300(2014).

    [94] I RUKHLENKO, N TEPLIAKOV, A BAIMURATOV et al. Completely chiral optical force for enantioseparation. Scientific Reports, 6, 36884(2016).

    [95] G TKACHENKO, E BRASSELET. Spin controlled optical radiation pressure. Physical Review Letters, 111, 033605(2013).

    [96] G TKACHENKO, E BRASSELET. Optofluidic sorting of material chirality by chiral light. Nature Communications, 5, 3577(2014).

    [97] G TKACHENKO, E BRASSELET. Helicity-dependent three-dimensional optical trapping of chiral microparticles. Nature Communications, 5, 4491(2014).

    [98] Huajin CHEN, Chenghua LIANG, Shiyang LIU et al. Chirality sorting using two-wave-interference-induced lateral optical force. Physical Review A, 93, 053833(2016).

    [99] Tianhang ZHANG, M R C MAHDY, Yongmin LIU et al. All-optical chirality-sensitive sorting via reversible lateral forces in interference fields. ACS Nano, 11, 4292-4300(2017).

    [100] Yuzhi SHI, Tongtong ZHU, Tianhang ZHANG et al. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. Light: Science & Applications, 9, 2047-7538(2020).

    [101] Ying LI, Guanghao RUI, Sichao ZHOU et al. Enantioselective optical trapping of chiral nanoparticles using a transverse optical needle field with a transverse spin. Optics Express, 28, 27808-27822(2020).

    [102] N KRAVETS, A ALEKSANYAN, E BRASSELET. Chiral optical Stern-Gerlach newtonian experiment. Physical Review Letters, 122, 024301(2019).

    [103] G PELLEGRINI, M FINAZZI, M CELEBRANO et al. Superchiral surface waves for all-optical enantiomer separation. Journal of Physical Chemistry C, 123, 28336-28342(2019).

    [104] Xinyuan YING, Guanghao RUI, Shuting ZOU et al. Synthesis of multiple longitudinal polarization vortex structures and its application in sorting chiral nanoparticles. Optics Express, 29, 19001-19014(2021).

    [105] P W SMITH, A ASHKIN, W J TOMLINSON. Four-wave mixing in an artificial Kerr medium. Optics Letters, 6, 284-286(1981).

    [106] A A SALEH, J A DIONNE. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures. Nano Letters, 12, 5581-5586(2012).

    [107] K WANG, E SCHONBRUN, P STEINVURZEL et al. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nature Communications, 2, 469(2011).

    [108] Chang CHEN, M L JUAN, Yi LI et al. Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity. Nano Letters, 12, 125-132(2012).

    [109] Yuanjie PANG, R Gordon. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Letters, 11, 3763-3767(2011).

    [110] Xiaodong YANG, Yongmin LIU, R F OULTON et al. Optical forces in hybrid plasmonic waveguides. Nano Letters, 11, 321-328(2011).

    [111] M L JUAN, M RIGHINI, R QUIDANT. Plasmon nano-optical tweezers. Nature Photonics, 5, 349-356(2011).

    [112] Zhigang ZHENG, Yanqing LU, Quan LI. Photoprogrammable mesogenic soft helical architectures: a promising avenue toward future chiro-optics. Advanced Materials, 32, 1905318(2020).

    [113] V K VALEV, J J BAUMBERG, C SIBILIA et al. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Advanced Materials, 25, 2517-2534(2013).

    [114] T SHOJI, Y TSUBOI. Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping. Journal of Physical Chemistry Letters, 5, 2957-2967(2014).

    [115] D G KOTSIFAKI, S N CHORMAIC. Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects. Nanophotonics, 8, 1227-1245(2019).

    [116] A A E SALEH, S SHEIKHOELISLAMI, S GASTELUM et al. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers. Optics Express, 24, 20593-20603(2016).

    [117] M H ALIZADEH, B M REINHARD. Enhanced optical chirality through locally excited surface plasmon polaritons. ACS Photonics, 2, 942-949(2015).

    [118] M H ALIZADEH, B M REINHARD. Transverse chiral optical forces by chiral surface plasmon polariton. ACS Photonics, 2, 1780-1788(2015).

    [119] A CANAGUIER-DURAND, C GENET. Plasmonic lateral forces on chiral spheres. Journal of Optics, 18, 015007(2016).

    [120] Yang ZHAO, A A SALEH, J A DIONNE. Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers. ACS Photonics, 3, 304-309(2016).

    [121] Zhanhong LIN, Jiwei ZHANG, J S HUANG. Plasmonic elliptical nanoholes for chiroptical analysis and enantioselective optical trapping. Nanoscale, 13, 9185-9192(2021).

    [122] Qiang ZHANG, Junqing LI, Xingguang LIU. Optical lateral forces and torques induced by chiral surface-plasmon-polaritons and their potential applications in recognition and separation of chiral enantiomers. Physical Chemistry Chemical Physics, 21, 1308-1314(2019).

    [123] A E MIROSHNICHENKO, S FLACH, Y S KIVSHAR. Fano resonances in nanoscale structures. Reviews of Modern Physics, 82, 2257-2298(2010).

    [124] C WU, A B KHANIKAEV, R ADATO et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature Materials, 11, 69-75(2012).

    [125] M H ALIZADEH, B M REINHARD. Plasmonically enhanced chiral optical fields and forces in achiral split ring resonators. ACS Photonics, 2, 361-368(2015).

    [126] Tun CAO, Yimei QIU. Lateral sorting of chiral nanoparticles using Fano-enhanced chiral force in visible region. Nanoscale, 10, 566-574(2018).

    [127] Tun CAO, Libang MAO, Yimei QIU et al. Fano resonance in asymmetric plasmonic nanostructure: separation of sub-10 nm enantiomers. Advanced Optical Materials, 7, 1801172(2019).

    [128] J JAHNG, J BROCIOUS, D A FISHMAN et al. Gradient and scattering forces in photoinduced force microscopy. Physical Review B, 90, 155417(2014).

    [129] J JAHNG, D A FISHMAN, S PARK et al. Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy. Accounts of Chemical Research, 48, 2671-2679(2015).

    [130] M KAMANDI, M ALBOOYEH, C GUCLU et al. Enantiospecific detection of chiral nanosamples using photoinduced force. Physical Review A, 8, 064010(2017).

    [131] M KAMANDI, M ALBOOYEH, M VEYSI et al. Unscrambling structured chirality with structured light at the nanoscale using photoinduced force. ACS Photonics, 5, 4360-4370(2018).

    [132] Yang ZHAO, A A SALEH, HAAR M AVAN DE et al. Nanoscopic control and quantification of enantioselective optical forces. Nature Nanotechnology, 12, 1055-1059(2017).

    [133] R TULLIUS, G W PLATT, L K KHORASHAD et al. Superchiral plasmonic phase sensitivity for fingerprinting of protein interface structure. ACS Nano, 11, 12049-12056(2017).

    [134] C KELLY, R TULLIUS, A J LAPTHORN et al. Chiral plasmonic fields probe structural order of biointerfaces. Journal of the American Chemical Society[, 140, 8509-8517(2018).

    [135] M RODIER, C KEIJZER, J MILNER et al. Probing specificity of protein-protein interactions with chiral plasmonic nanostructures. Journal of Physical Chemistry Letters, 10, 6105-6111(2019).

    [136] Wei MA, Hua KUANG, Liguang XU et al. Attomolar DNA detection with chiral nanorod assemblies. Nature Communications, 4, 2689(2013).

    [137] Yang ZHAO, A N ASKARPOUR, Liuyang SUN et al. Chirality detection of enantiomers using twisted optical metamaterials. Nature Communications, 8, 14180(2017).

    [138] Guanghao RUI, Shuting ZOU, Bing GU et al. Surface-enhanced circular dichroism by localized superchiral hotspots in dielectric dimer array metasurface. Journal of Physical Chemistry C, 126, 2199-2206(2022).

    [139] Jiangfeng ZHOU, Jianfeng DONG, Bingnan WANG et al. Negative refractive index due to chirality. Physical Review B, 79, 121104(2009).

    [140] Xiang XIONG, Weihua SUN, Yongjun BAO et al. Construction of a chiral metamaterial with a U-shaped resonator assembly. Physical Review B, 81, 075119(2010).

    [141] Shangchi JIANG, Xiang XIONG, Yuansheng HU et al. High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection. Physical Review B, 91, 125421(2015).

    Guanghao RUI, Qiwen ZHAN. Nanophotonic Methods for Chiral Sensing and Characterization(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551301
    Download Citation