• Chinese Optics Letters
  • Vol. 18, Issue 11, 113701 (2020)
Hu Deng1、2, Weiwei Qu1, Quancheng Liu1, Zhixiang Wu1, and Liping Shang1、2、*
Author Affiliations
  • 1School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
  • 2Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
  • show less
    DOI: 10.3788/COL202018.113701 Cite this Article Set citation alerts
    Hu Deng, Weiwei Qu, Quancheng Liu, Zhixiang Wu, Liping Shang. Terahertz radiation enhancement in photoconductive antennas with embedded split-ring resonators[J]. Chinese Optics Letters, 2020, 18(11): 113701 Copy Citation Text show less
    D-PCA and MSPCA. (a) Micrograph of D-PCA. (b) Structure and parameters of SRRs. (c) Micrograph of MSPCA-A. (d) Micrograph of MSPCA-B.
    Fig. 1. D-PCA and MSPCA. (a) Micrograph of D-PCA. (b) Structure and parameters of SRRs. (c) Micrograph of MSPCA-A. (d) Micrograph of MSPCA-B.
    Optical propagation trajectory of THz time domain spectroscopy system.
    Fig. 2. Optical propagation trajectory of THz time domain spectroscopy system.
    Pumping position of femtosecond laser at (a) MSPCA-A and (b) MSPCA-B.
    Fig. 3. Pumping position of femtosecond laser at (a) MSPCA-A and (b) MSPCA-B.
    THz characteristics of femtosecond laser pumping on the D-PCA, MSPCA-A, and MSPCA-B. Comparison of (a) amplitude and normalized amplitude of THz time domain spectra, and (b) power and normalized power of THz frequency domain spectra.
    Fig. 4. THz characteristics of femtosecond laser pumping on the D-PCA, MSPCA-A, and MSPCA-B. Comparison of (a) amplitude and normalized amplitude of THz time domain spectra, and (b) power and normalized power of THz frequency domain spectra.
    Comparison of the characteristics of the THz radiation for femtosecond laser pumping on the split positions of SRR of MSPCA and on the electrode edge of the D-PCA. (a) THz amplitude and normalized THz amplitude of MSPCA-A and D-PCA, (b) THz power and normalized THz power of MSPCA-A and D-PCA, (c) THz amplitude and normalized THz amplitude of MSPCA-B and D-PCA, and (d) THz power and normalized THz power of MSPCA-B and D-PCA.
    Fig. 5. Comparison of the characteristics of the THz radiation for femtosecond laser pumping on the split positions of SRR of MSPCA and on the electrode edge of the D-PCA. (a) THz amplitude and normalized THz amplitude of MSPCA-A and D-PCA, (b) THz power and normalized THz power of MSPCA-A and D-PCA, (c) THz amplitude and normalized THz amplitude of MSPCA-B and D-PCA, and (d) THz power and normalized THz power of MSPCA-B and D-PCA.
    Comparison of THz time domain spectrum for femtosecond laser pumping at different positions. THz amplitude and normalized THz amplitude of (a) MSPCA-A when the pumping light is incident on −90 μm and −100 μm and (b) MSPCA-B when the pumping light is incident on −110 μm and −100 μm. Pattern of THz time domain spectral peak-to-peak value of (c) MSPCA-A and (d) MSPCA-B.
    Fig. 6. Comparison of THz time domain spectrum for femtosecond laser pumping at different positions. THz amplitude and normalized THz amplitude of (a) MSPCA-A when the pumping light is incident on −90 μm and −100 μm and (b) MSPCA-B when the pumping light is incident on −110 μm and −100 μm. Pattern of THz time domain spectral peak-to-peak value of (c) MSPCA-A and (d) MSPCA-B.
    Patterns at the maximum bias voltage when the femtosecond laser is pumped onto different positions of (a) MSPCA-A and (b) MSPCA-B. The electrostatic field of the (c) positive electrode and (d) negative electrode of the MSPCA.
    Fig. 7. Patterns at the maximum bias voltage when the femtosecond laser is pumped onto different positions of (a) MSPCA-A and (b) MSPCA-B. The electrostatic field of the (c) positive electrode and (d) negative electrode of the MSPCA.
    Hu Deng, Weiwei Qu, Quancheng Liu, Zhixiang Wu, Liping Shang. Terahertz radiation enhancement in photoconductive antennas with embedded split-ring resonators[J]. Chinese Optics Letters, 2020, 18(11): 113701
    Download Citation