• Frontiers of Optoelectronics
  • Vol. 6, Issue 2, 134 (2013)
Zhen WANG1、2、*
Author Affiliations
  • 1Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-013-0319-9 Cite this Article
    Zhen WANG. Recent advances of optical imaging in animal stroke model[J]. Frontiers of Optoelectronics, 2013, 6(2): 134 Copy Citation Text show less
    References

    [1] Sims N R, Muyderman H. Mitochondria, oxidative metabolism and cell death in stroke. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2010, 1802(1): 80-91

    [2] Brown D L, Boden-Albala B, Langa K M, Lisabeth L D, Fair M, Smith M A, Sacco R L, Morgenstern L B. Projected costs of ischemic stroke in the United States. Neurology, 2006, 67(8): 1390-1395

    [3] Joshi S, Agarwal S. The proposed role of optical sensing in translational stroke research. Annals of the New York Academy of Sciences, 2010, 1199(1): 149-157

    [4] Li C, Wang L V. Photoacoustic tomography and sensing in biomedicine. Physics in Medicine and Biology, 2009, 54(19): R59-R97

    [5] Anna Devor S S, Srinivasan V J, Yaseen M A, Nizar K, Saisan P A, Tian P, Dale A M, Vinogradov S A, Maria Angela Franceschini D A B. Frontiers in optical imaging of cerebral blood flow and metabolism. Journal of Cerebral Blood Flow and Metabolism, 2012, 32: 1259- 1276

    [6] Zhang S, Murphy T H. Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biology, 2007, 5(5): e119

    [7] Grant P E, Roche-Labarbe N, Surova A, Themelis G, Selb J,Warren E K, Krishnamoorthy K S, Boas D A, Franceschini M A. Increased cerebral blood volume and oxygen consumption in neonatal brain injury. Journal of Cerebral Blood Flow and Metabolism, 2009, 29(10): 1704-1713

    [8] Mesquita R C, Durduran T, Yu G, Buckley E M, Kim M N, Zhou C, Choe R, Sunar U,Yodh A G. Direct measurement of tissue blood flow and metabolism with diffuse optics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1955): 4390-4406

    [9] Obrig H, Steinbrink J. Non-invasive optical imaging of stroke. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1955): 4470-4494

    [10] Wilson K, Homan K, Emelianov S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nature Communications, 2012, 3:618

    [11] Wang L V. Tutorial on photoacoustic microscopy and computed tomography. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(1): 171-179

    [12] Wang L V. Multiscale photoacoustic microscopy and computed tomography. Nature Photonics, 2009, 3(9): 503-509

    [13] Wang L V. Prospects of photoacoustic tomography. Medical Physics, 2008, 35(12): 5758-5767

    [14] Hu S, Gonzales E, Soetikno B, Gong E, Yan P, Maslov K, Lee J M, Wang L V. Optical-resolution photoacoustic microscopy of ischemic stroke. In: Proceedings of SPIE, Photons Plus Ultrasound: Imaging and Sensing. 2011, 7899: 789906

    [15] Soetikno B, Hu S, Gonzales E, Zhong Q, Maslov K, Lee J M,Wang L V. Vessel segmentation analysis of ischemic stroke images acquired with photoacoustic microscopy. In: Proceedings of SPIE, Photons Plus Ultrasound: Imaging and Sensing. 2012, 8233: 822345

    [16] Deng Z L, Wang Z, Yang X Q, Luo Q M, Gong H. In vivo imaging of hemodynamics and oxygen metabolism in acute focal cerebral ischemic rats with laser speckle imaging and functional photoacoustic microscopy. Journal of Biomedical Optics, 2012, 17(8): 081415

    [17] Ermilov S A, Khamapirad T, Conjusteau A, LeonardMH, Lacewell R, Mehta K, Miller T, Oraevsky A A. Laser optoacoustic imaging system for detection of breast cancer. Journal of Biomedical Optics, 2009, 14(2): 024007

    [18] Esenaliev R O, Karabutov A A, Oraevsky A A. Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 981-988

    [19] Ku G, Wang L V. Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Optics Letters, 2005, 30(5): 507-509

    [20] Hamilton J D, O’Donnell M. High frequency ultrasound imaging with optical arrays. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1998, 45(1): 216-235

    [21] Payne B P, Venugopalan V, Mikic B B, Nishioka N S. Optoacoustic tomography using time-resolved interferometric detection of surface displacement. Journal of Biomedical Optics, 2003, 8(2): 273-280

    [22] Carp S A, Guerra A, Duque S Q, Venugopalan V. Optoacoustic imaging using interferometric measurement of surface displacement. Applied Physics Letters, 2004, 85(23): 5772-5774

    [23] Carp S A, Venugopalan V. Optoacoustic imaging based on the interferometric measurement of surface displacement. Journal of Biomedical Optics, 1999, 12(6): 064001

    [24] Xu Y,Wang L V. Rhesus monkey brain imaging through intact skull with thermoacoustic tomography. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2006, 53(3): 542-548

    [25] Yang X M, Wang L V. Monkey brain cortex imaging by photoacoustic tomography. Journal of Biomedical Optics, 2008, 13(4): 044009

    [26] Yao J, Wang L V. Photoacoustic tomography: fundamentals, advances and prospects. Contrast Media & Molecular Imaging, 2011, 6(5): 332-345

    [27] Dunn A K. Laser speckle contrast imaging of cerebral blood flow. Annals of Biomedical Engineering, 2012, 40(2): 367-377

    [28] Song L, Elson D S. Effect of signal intensity and camera quantization on laser speckle contrast analysis. Biomedical Optics Express, 2013, 4(1): 89-104

    [29] He H, Tang Y, Zhou F, Wang J, Luo Q, Li P. Lateral laser speckle contrast analysis combined with line beam scanning illumination to improve the sampling depth of blood flow imaging. Optics Letters, 2012, 37(18): 3774-3776

    [30] Zhang H Y, Li P, Feng N, Qiu J, Li B, Luo W, Luo Q. Correcting the detrimental effects of nonuniform intensity distribution on fibertransmitting laser speckle imaging of blood flow. Optics Express, 2012, 20(1): 508-517

    [31] Song L P, Elson D S. Dual-wavelength endoscopic laser speckle contrast imaging system for indicating tissue blood flow and oxygenation. In: Proceedings of SPIE, Dynamics and Fluctuations in Biomedical Photonics IX. 2012, 8222: 822209

    [32] Lu H Y, Miao P, Liu Q, Li Y, Tong S B. Dual-modal (OIS/LSCI) imager of cerebral cortex in freely moving animals. In: Proceedings of SPIE, 10th International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2011). 2012, 8329: 83290P

    [33] Boas D A, Dunn A K. Laser speckle contrast imaging in biomedical optics. Journal of Biomedical Optics, 2010, 15(1): 011109

    [34] Parthasarathy A B, Kazmi S M, Dunn A K. Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging. Biomedical Optics Express, 2010, 1(1): 246-259

    [35] Levy H, Ringuette D, Levi O. Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow. Biomedical Optics Express, 2012, 3(4): 777-791

    [36] Qin J, Shi L, Dziennis S, Reif R,Wang R K. Fast synchronized dualwavelength laser speckle imaging system for monitoring hemodynamic changes in a stroke mouse model. Optics Letters, 2012, 37(19): 4005-4007

    [37] Wang Z, Luo W, Zhou F, Li P, Luo Q. Dynamic change of collateral flow varying with distribution of regional blood flow in acute ischemic rat cortex. Journal of Biomedical Optics, 2012, 17(12): 125001

    [38] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy. Science (New York, NY), 1990, 248(4951): 73-76

    [39] Denk W, Svoboda K. Photon upmanship: techreview why multiphoton imaging is more than a gimmick. Neuron, 1997, 18: 351-357

    [40] Shih A Y, Driscoll J D, Drew P J, Nishimura N, Schaffer C B, Kleinfeld D. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. Journal of Cerebral Blood Flow and Metabolism, 2012, 32(7): 1277-1309

    [41] Ginsberg M D, Busto R. Rodent models of cerebral ischemia. Stroke, 1989, 20(12): 1627-1642

    [42] Kovari E, Gold G, Herrmann F R, Canuto A, Hof P R, Bouras C, Giannakopoulos P. Cortical microinfarcts and demyelination affect cognition in cases at high risk for dementia. Neurology, 2007, 68(12): 927-931

    [43] Suter O C, Sunthorn T, Kraftsik R, Straubel J, Darekar P, Khalili K, Miklossy J. Cerebral hypoperfusion generates cortical watershed microinfarcts in Alzheimer disease. Stroke, 2002, 33(8): 1986-1992

    [44] Hua R, Walz W. The need for animal models in small-vessel brain disease. Critical Reviews in Neurobiology, 2006, 18(1-2): 5-11

    [45] Mohajerani M H, Aminoltejari K, Murphy T H. Targeted ministrokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(22): E183-E191

    [46] Nishimura N, Schaffer C B, Friedman B, Lyden P D, Kleinfeld D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 365-370

    [47] Nishimura N, Schaffer C B, Friedman B, Tsai P S, Lyden P D, Kleinfeld D. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nature Methods, 2006, 3(2): 99-108

    [48] Schaffer C B, Friedman B, Nishimura N, Schroeder L F, Tsai P S, Ebner F F, Lyden P D, Kleinfeld D. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biology, 2006, 4(2): e22

    [49] Watson B D, Dietrich W D, Busto R, Wachtel M S, Ginsberg M D. Induction of reproducible brain infarction by photochemically initiated thrombosis. Annals of Neurology, 1985, 17(5): 497-504

    [50] Brown C E, Li P, Boyd J D, Delaney K R, Murphy T H. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. The Journal of Neuroscience, 2007, 27(15): 4101-4109

    [51] Mostany R, Portera-Cailliau C. Absence of large-scale dendritic plasticity of layer 5 pyramidal neurons in peri-infarct cortex. The Journal of Neuroscience, 2011, 31(5): 1734-1738

    [52] Zhang S, Boyd J, Delaney K, Murphy T H. Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. The Journal of Neuroscience, 2005, 25(22): 5333-5338

    [53] Drew P J, Shih A Y, Driscoll J D, Knutsen P M, Blinder P, Davalos D, Akassoglou K, Tsai P S, Kleinfeld D. Chronic optical access through a polished and reinforced thinned skull. Nature Methods, 2010, 7(12): 981-984

    [54] Davalos D, Grutzendler J, Yang G, Kim J V, Zuo Y, Jung S, Littman D R, DustinML, GanWB. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience, 2005, 8(6): 752-758

    [55] Sigler A, Murphy T H. In vivo 2-photon imaging of fine structure in the rodent brain: before, during, and after stroke. Stroke, 2010, 41(10 Suppl): S117-S123

    [56] Dijkhuizen R M, Ren J M, Mandeville J B, Wu O, Ozdag F M, Moskowitz M A, Rosen B R, Finklestein S P. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(22): 12766-12771

    [57] Li P, Murphy T H. Two-photon imaging during prolonged middle cerebral artery occlusion in mice reveals recovery of dendritic structure after reperfusion. The Journal of Neuroscience, 2008, 28(46): 11970-11979

    [58] Murphy T H, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nature Reviews. Neuroscience, 2009, 10(12): 861-872

    [59] Brown C E, Aminoltejari K, Erb H, Winship I R, Murphy T H. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. The Journal of Neuroscience, 2009, 29(6): 1719-1734

    [60] Winship I R, Murphy T H. Remapping the somatosensory cortex after stroke: insight from imaging the synapse to network. Neuroscientist, 2009, 15(5): 507-524

    [61] Carmichael S T. Plasticity of cortical projections after stroke. Neuroscientist, 2003, 9(1): 64-75

    [62] Carmichael S T. Cellular and molecular mechanisms of neural repair after stroke: making waves. Annals of Neurology, 2006, 59(5): 735-742

    [63] Coq J O, Xerri C. Acute reorganization of the forepaw representation in the rat SI cortex after focal cortical injury: neuroprotective effects of piracetam treatment. European Journal of Neuroscience, 1999, 11(8): 2597-2608

    [64] Dancause N, Barbay S, Frost S B, Plautz E J, Chen D, Zoubina E V, 144 Front. Optoelectron. 2013, 6(2): 134-145

    [65] Stowe A M, Nudo R J. Extensive cortical rewiring after brain injury. The Journal of Neuroscience, 2005, 25(44): 10167-10179

    [66] Nudo R J, Milliken G W. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. Journal of Neurophysiology, 1996, 75(5): 2144-2149

    [67] Rouiller E M, Yu X H, Moret V, Tempini A, Wiesendanger M, Liang F. Dexterity in adult monkeys following early lesion of the motor cortical hand area: the role of cortex adjacent to the lesion. European Journal of Neuroscience, 1998, 10(2): 729-740

    [68] Castro-Alamancos M A, Borrel J. Functional recovery of forelimb response capacity after forelimb primary motor cortex damage in the rat is due to the reorganization of adjacent areas of cortex. Neuroscience, 1995, 68(3): 793-805

    [69] Dijkhuizen R M, Singhal A B, Mandeville J B, Wu O, Halpern E F, Finklestein S P, Rosen B R, Lo E H. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. The Journal of Neuroscience, 2003, 23(2): 510-517

    [70] Rossini P M, Altamura C, Ferreri F, Melgari J M, Tecchio F, Tombini M, Pasqualetti P, Vernieri F. Neuroimaging experimental studies on brain plasticity in recovery from stroke. Europa Medicophysica, 2007, 43(2): 241-254

    [71] Schaechter J D, Moore C I, Connell B D, Rosen B R, Dijkhuizen R M. Structural and functional plasticity in the somatosensory cortex of chronic stroke patients. Brain, 2006, 129(10): 2722-2733

    [72] Johnston D G, Denizet M, Mostany R, Portera-Cailliau C. Chronic in vivo imaging shows no evidence of dendritic plasticity or functional remapping in the contralesional cortex after stroke. Cerebral Cortex, 2012,

    [73] Kleinfeld D, Mitra P P, Helmchen F, Denk W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(26): 15741-15746

    [74] Devor A, Tian P, Nishimura N, Teng I C, Hillman E M C, Narayanan S N, Ulbert I, Boas D A, Kleinfeld D, Dale A M. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. The Journal of Neuroscience, 2007, 27(16): 4452-4459

    [75] Tian P, Teng I C, May L D, Kurz R, Lu K, Scadeng M, Hillman EM C, De Crespigny A J, D’Arceuil H E, Mandeville J B, Marota J J, Rosen B R, Liu T T, Boas D A, Buxton R B, Dale A M, Devor A. Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(34): 15246-15251

    [76] Kobat D, Durst ME, Nishimura N,Wong A W, Schaffer C B, Xu C. Deep tissue multiphoton microscopy using longer wavelength excitation. Optics Express, 2009, 17(16): 13354-13364

    [77] Kirchhoff F, Debarbieux F, Kronland-martinet C, Cojocaru G, Popa-Wagner A. Combined two-photon laser-scanning microscopy and spectral microCT X-ray imaging to characterize the cellular signature and evolution of microstroke foci. Romanian Journal of Morphology and Embryology, 2012, 53(3 Suppl): 671-675

    [78] Feng G, Mellor R H, Bernstein M, Keller-Peck C, Nguyen Q T, Wallace M, Nerbonne J M, Lichtman J W, Sanes J R. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron, 2000, 28(1): 41-51

    [79] Helmchen F, Fee M S, Tank D W, Denk W. A miniature headmounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron, 2001, 31(6): 903-912

    [80] Piyawattanametha W, Cocker E D, Burns L D, Barretto R P J, Jung J C, Ra H, Solgaard O, Schnitzer M J. In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror. Optics Letters, 2009, 34(15): 2309-2311

    [81] Risher W C, Ard D, Yuan J, Kirov S A. Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra. The Journal of Neuroscience, 2010, 30(29): 9859-9868

    Zhen WANG. Recent advances of optical imaging in animal stroke model[J]. Frontiers of Optoelectronics, 2013, 6(2): 134
    Download Citation