• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101010 (2022)
Yingying Wang1, Nan Zhang2, Peiqing Zhang1、3、4、5, Xunsi Wang1、3、4、5, and Shixun Dai1、3、4、5、*
Author Affiliations
  • 1Laboratory of Infrared Material and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang 315211, China
  • 2College of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
  • 3Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo, Zhejiang 315211, China
  • 4Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Provinces, Ningbo, Zhejiang 315211, China
  • 5International Science & Technology Cooperation Base of Infrared Materials and Devices of Zhejiang Provinces, Ningbo, Zhejiang 315211, China
  • show less
    DOI: 10.3788/CJL202249.0101010 Cite this Article Set citation alerts
    Yingying Wang, Nan Zhang, Peiqing Zhang, Xunsi Wang, Shixun Dai. Broadband and Coherent Supercontinuum Generation in All-Normal-Dispersion Double-Clad Ge-As-Se-Te Fiber Taper[J]. Chinese Journal of Lasers, 2022, 49(1): 0101010 Copy Citation Text show less
    References

    [1] Petersen C R, Prtljaga N, Farries M et al. Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source[J]. Optics Letters, 43, 999-1002(2018).

    [2] Ringsted T, Siesler H W, Engelsen S B. Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy[J]. Journal of Cereal Science, 75, 92-99(2017).

    [3] Amiot C, Ryczkowski P, Aalto A et al. Multi-component gas detection in the mid-IR[J], 1(2015).

    [4] Kumar M, Islam M N, Terry F L et al. Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source[J]. Applied Optics, 51, 2794-2807(2012).

    [5] Domachuk P, Wolchover N A, Cronin-Golomb M et al. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Optics Express, 16, 7161-7168(2008).

    [6] Liao M S, Gao W Q, Duan Z C et al. Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser[J]. Optics Letters, 37, 2127-2129(2012).

    [7] Jia Z X, Yao C F, Li Z R et al. Progress on novel high power mid-infrared fiber laser materials and supercontinuum laser[J]. Chinese Journal of Lasers, 46, 0508006(2019).

    [8] Wang F, Wang K, Yao C et al. Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation[J]. Optics Letters, 41, 634-637(2016).

    [9] Qin G S, Yan X, Kito C et al. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber[J]. Applied Physics Letters, 95, 161103(2009).

    [10] Dai S X, Wang Y Y, Peng X F et al. A review of mid-infrared supercontinuum generation in chalcogenide glass fibers[J]. Applied Sciences, 8, 707(2018).

    [11] Wang Y Y, Dai S X. Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review[J]. PhotoniX, 2, 1-23(2021).

    [12] Dai S X, Wang M, Wang Y Y et al. Review of mid-infrared supercontinuum spectrum generation based on chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 57, 071603(2020).

    [13] Petersen C R, Møller U, Kubat I et al. Mid-infrared supercontinuum covering the 1.413.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 8, 830-834(2014).

    [14] Ou H, Dai S, Zhang P et al. Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber[J]. Optics Letters, 41, 3201-3204(2016).

    [15] Petersen C R, Engelsholm R D, Markos C et al. Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers[J]. Optics Express, 25, 15336-15348(2017).

    [16] Agrawal G P[M]. Nonlinear fiber optics(2013).

    [17] Rao D S S, Jensen M, Grüner-Nielsen L et al. Shot-noise limited, supercontinuum-based optical coherence tomography[J]. Light: Science & Applications, 10, 133(2021).

    [18] Zhang J, Cai Y R, Huang Q Q et al. Near-infrared comb spectroscopy technology based on flat coherent supercontinuum[J]. Chinese Journal of Lasers, 48, 0711003(2021).

    [19] Huang C L, Liao M S, Bi W J et al. Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion[J]. Photonics Research, 6, 601-608(2018).

    [20] Heidt A M, Hartung A, Bosman G W et al. Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers[J]. Optics Express, 19, 3775-3787(2011).

    [21] Hooper L E, Mosley P J, Muir A C et al. Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion[J]. Optics Express, 19, 4902-4907(2011).

    [22] Diouf M, Salem A B, Cherif R et al. Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy[J]. Applied Optics, 56, 163-169(2017).

    [23] Al-Kadry A, Li L, El Amraoui M et al. Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires[J]. Optics Letters, 40, 4687-4690(2015).

    [24] Zhang N, Peng X, Wang Y et al. Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion[J]. Optics Express, 27, 10311-10319(2019).

    [25] Wang Y Y, Dai S X, Li G T et al. 1.47.2 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime[J]. Optics Letters, 42, 3458-3461(2017).

    [26] Jayasuriya D, Petersen C R, Furniss D et al. Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber[J]. Optical Materials Express, 9, 2617-2629(2019).

    [27] Jiao K, Yao J M, Zhao Z M et al. Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber[J]. Optics Express, 27, 2036-2043(2019).

    [28] Sun Y, Dai S, Zhang P et al. Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures[J]. Optics Express, 23, 23472-23483(2015).

    [29] Luo B H, Wang Y Y, Sun Y N et al. Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper[J]. Infrared Physics & Technology, 80, 105-111(2017).

    [30] Liu L, Nagasaka K, Qin G S et al. Coherence property of mid-infrared supercontinuum generation in tapered chalcogenide fibers with different structures[J]. Applied Physics Letters, 108, 011101(2016).

    Yingying Wang, Nan Zhang, Peiqing Zhang, Xunsi Wang, Shixun Dai. Broadband and Coherent Supercontinuum Generation in All-Normal-Dispersion Double-Clad Ge-As-Se-Te Fiber Taper[J]. Chinese Journal of Lasers, 2022, 49(1): 0101010
    Download Citation