• Chinese Optics Letters
  • Vol. 23, Issue 6, 062501 (2025)
Qianli Ma1, Yiheng Li1, Dawei He2, Yongsheng Wang2, and Yajie Yang2,*
Author Affiliations
  • 1School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
  • 2Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
  • show less
    DOI: 10.3788/COL202523.062501 Cite this Article Set citation alerts
    Qianli Ma, Yiheng Li, Dawei He, Yongsheng Wang, Yajie Yang, "High-performance broadband photodetectors based on b-As0.5P0.5 for infrared optical communication and imaging," Chin. Opt. Lett. 23, 062501 (2025) Copy Citation Text show less
    References

    [1] C. Liu, J. Guo, L. Yu et al. Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light Sci. Appl., 10, 123(2021).

    [2] G. Rao, X. Wang, Y. Wang et al. Two-dimensional heterostructure promoted infrared photodetection devices. InfoMat, 1, 272(2019).

    [3] H. Wang, Z. Li, D. Li et al. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Adv. Funct. Mater., 31, 2103106(2021).

    [4] U. Adiyan, T. Larsen, J. J. Zárate et al. Shape memory polymer resonators as highly sensitive uncooled infrared detectors. Nat. Commun., 10, 4518(2019).

    [5] K. S. Novoselov, A. K. Geim, S. V. Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [6] K. S. Novoselov, A. K. Geim, S. V. Morozov et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197(2005).

    [7] Y. Zhang, Y.-W. Tan, H. L. Stormer et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438, 201(2005).

    [8] R. Nandee, M. A. Chowdhury, A. Shahid et al. Band gap formation of 2D materialin graphene: Future prospect and challenges. Results Eng., 15, 100474(2022).

    [9] J. Qiao, X. Kong, Z.-X. Hu et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun., 5, 4475(2014).

    [10] T. Vy, R. Soklaski, Y. Liang et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 89, 235319(2014).

    [11] L. Li, Y. Yu, G. J. Ye et al. Black phosphorus field-effect transistors. Nat. Nanotechnol., 9, 372(2014).

    [12] A. Castellanos-Gomez, L. Vicarelli, E. Prada et al. Isolation and characterization of few-layer black phosphorus. 2D Mater., 1, 025001(2014).

    [13] I. Shirotani, J. Mikami, T. Adachi et al. Phase-transitions and superconductivity of black phosphorus and phosphorus arsenic alloys at low-temperatures and high-pressures. Phys. Rev. B, 50, 16274(1994).

    [14] A. Chauhan, K. Sharma, S. Choudhary. Transition metal induced- magnetization and spin-polarisation in black arsenic phosphorous. Ain Shams Eng. J., 15, 102632(2024).

    [15] X. Li, J. Luo, H. Yang et al. Thermoelectric transport and Rashba spin splitting of black arsenic phosphorus under strain regulation. Europhys. Lett., 146, 56002(2024).

    [16] N. D. Zhigadlo. Exploring 2D materials by high pressure synthesis: hBN, Mg-hBN, b-P, b-AsP, and GeAs. J. Cryst. Growth, 631, 127627(2024).

    [17] B. Liu, M. Kopf, A. N. Abbas et al. Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater., 27, 4423(2015).

    [18] J. Liang, Y. Hu, K. Zhang et al. 2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications. Nano Res., 15, 3737(2022).

    [19] R. Han, S. Feng, D.-M. Sun et al. Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus. Sci. China Inform. Sci., 64, 140402(2021).

    [20] Z. Zhu, J. Guan, D. Tomanek. Structural transition in layered As(1-x)P(x) compounds: a computational study. Nano Lett., 15, 6042(2015).

    [21] Y. Wang, C. Chen, Z. Tang et al. Tunable bandgap of black phosphorus by arsenic substitution toward high-performance photodetector. Sci. China Mater., 66, 2364(2023).

    [22] F. Liu, X. Zhang, P. Gong et al. Potential outstanding physical properties of novel black arsenic phosphorus As(0.25)P(0.75)/As(0.75)P(0.25) phases: a first-principles investigation. RSC Adv., 12, 3745(2022).

    [23] B. Karki, M. Rajapakse, G. U. Sumanasekera et al. Structural and thermoelectric properties of black arsenic–phosphorus. ACS Appl. Energy Mater., 3, 8543(2020).

    [24] F. Zhao, D. Wang, F. Zhang et al. Gate-controlled photoresponse improvement in b-AsP/WSe2 heterostructures with type-I band alignment. Appl. Phys. Lett., 122, 151105(2023).

    [25] S. Yuan, C. Shen, B. Deng et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett., 18, 3172(2018).

    [26] J. Tauc, R. Grigorovici, A. Vancu. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi, 15, 627(1966).

    [27] E. A. Davis, N. F. Mott. Conduction in non-crystalline systems. 5. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag., 22, 903(1970).

    [28] D. Zhuo, C. Jie, Z. H. U. Yi-fan et al. Room-temperature terahertz photodetectors based on black arsenic-phosphorus. Chin. Opt., 14, 182(2021).

    [29] F. Wu, H. Xia, H. Sun et al. AsP/InSe Van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Adv. Funct. Mater., 29, 1900314(2019).

    [30] Y. Fang, A. Armin, P. Meredith et al. Accurate characterization of next-generation thin-film photodetectors. Nat. Photonics, 13, 1(2019).

    [31] F. Wang, Z. Liu, T. Zhang et al. Fully depleted self-aligned heterosandwiched van der Waals photodetectors. Adv. Mater., 34, 2203283(2022).

    [32] F. Wang, T. Zhang, R. Xie et al. How to characterize figures of merit of two-dimensional photodetectors. Nat. Commun., 14, 2224(2023).

    [33] P. K. Venuthurumilli, P. D. Ye, X. Xu. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano, 12, 4861(2018).

    [34] J. Miao, B. Song, Z. Xu et al. Single pixel black phosphorus photodetector for near-infrared imaging. Small, 14, 1702082(2018).

    [35] M. Buscema, D. J. Groenendijk, S. I. Blanter et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett., 14, 3347(2014).

    [36] M. Long, A. Gao, P. Wang et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv., 3, e1700589(2017).

    [37] Y. Zhang, T. Liu, B. Meng et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun., 4, 1811(2013).

    [38] L.-B. Luo, H. Hu, X.-H. Wang et al. A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity. J. Mater. Chem. C, 3, 4723(2015).

    [39] H. Huang, J. Wang, W. Hu et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology, 27, 445201(2016).

    [40] Z. Lu, Y. Xu, Y. Yu et al. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater., 30, 1907951(2020).

    [41] Y. Deng, Z. Luo, N. J. Conrad et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano, 8, 8292(2014).

    [42] Y. Wang, X. Huang, D. Wu et al. A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm. J. Mater. Chem. C, 6, 4861(2018).

    [43] X. Yu, P. Yu, D. Wu et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun., 9, 1545(2018).

    [44] J. Yuan, T. Sun, Z. Hu et al. Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection. ACS Appl. Mater. Interfaces, 10, 40614(2018).

    [45] C. Shen, Y. Liu, J. Wu et al. Tellurene photodetector with high gain and wide bandwidth. ACS Nano, 14, 303(2020).

    [46] R. Peng, K. Khaliji, N. Youngblood et al. midinfrared electro-optic modulation in few-layer black phosphorus. Nano Lett., 17, 6315(2017).

    [47] X. Liu, W. Wang, F. Yang et al. Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector. Sci. China Inform. Sci., 64, 140404(2021).

    [48] L. Ye, P. Wang, W. Luo et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy, 37, 53(2017).

    [49] M. G. Kwon, C. Kim, K. E. Chang et al. Performance enhancement of graphene/Ge near-infrared photodetector by modulating the doping level of graphene. APL Photonics, 7, 026101(2022).

    [50] Q. Yang, Q. Wu, W. Luo et al. InGaAs/graphene infrared photodetectors with enhanced responsivity. Mater. Res. Express, 6, 116208(2019).

    [51] D. Wu, C. Guo, L. Zeng et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci. Appl., 12, 5(2023).

    [52] L. Ye, H. Li, Z. Chen et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics, 3, 692(2016).

    [53] P. Chen, Z. Wu, Y. Shi et al. High-performance silicon-based PbSe-CQDs infrared photodetector. J. Mater. Sci. Mater. Electron., 32, 9452(2021).

    [54] L. Zeng, W. Han, X. Ren et al. Uncooled mid-infrared sensing enabled by chip-integrated low-temperature-grown 2D PdTe(2) dirac semimetal. Nano Lett., 23, 8241(2023).

    [55] H. Xue, Y. Dai, W. Kim et al. High photoresponsivity and broadband photodetection with a band-engineered WSe 2/SnSe2 heterostructure. Nanoscale, 11, 3240(2019).

    [56] R. Chai, Y. Chen, M. Zhong et al. Non-layered ZnSb nanoplates for room temperature infrared polarized photodetectors. J. Mater. Chem. C, 8, 6388(2020).

    [57] C. Wu, G. Zhang, J. Jia et al. Highly polarization-deep-ultraviolet-sensitive β-ga2o3 epitaxial films by disrupting rotational symmetry and encrypted solar-blind optical communication application. J. Phys. Chem. Lett., 15, 3828(2024).

    [58] C. Wu, T. Zhao, H. He et al. Enhanced performance of gallium-based wide bandgap oxide semiconductor heterojunction photodetector for solar-blind optical communication via oxygen vacancy electrical activity modulation. Adv. Opt. Mater., 12, 2302294(2024).

    [59] H. Xu, Y. Weng, K. Chen et al. Ultra-low BER encrypted communication based on self-powered bipolar photoresponse ultraviolet photodetector. Adv. Opt. Mater., 13, 2402238(2024).

    Qianli Ma, Yiheng Li, Dawei He, Yongsheng Wang, Yajie Yang, "High-performance broadband photodetectors based on b-As0.5P0.5 for infrared optical communication and imaging," Chin. Opt. Lett. 23, 062501 (2025)
    Download Citation