• Matter and Radiation at Extremes
  • Vol. 1, Issue 1, 76 (2016)
Joseph Nilsen*
Author Affiliations
  • Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
  • show less
    DOI: 10.1016/j.mre.2015.12.001 Cite this Article
    Joseph Nilsen. Modeling the gain of inner-shell X-ray laser transitions in neon, argon, and copper driven by X-ray free electron laser radiation using photo-ionization and photo-excitation processes[J]. Matter and Radiation at Extremes, 2016, 1(1): 76 Copy Citation Text show less
    References

    [1] M.A. Duguay, P.M. Rentzepis, Some approaches to vacuum UV and X-ray lasers, Appl. Phys. Lett. 10 (1967) 350-352.

    [2] R.C. Elton, Quasi-stationary population inversion on Ka transitions, Appl. Opt. 14 (1975) 2243-2249.

    [3] K. Lan, E.E. Fill, J. Meyer-ter-Vehn, Simulation of He-a and Ly-a soft X-ray lasers in helium pumped by DESY/XFEL-radiation, Europhys. Lett. 64 (2003) 454-460.

    [4] Ke Lan, Ernst Fill, Jurgen Meyer-ter-Vehn, Photopumping of XUV lasers by XFEL radiation, Laser Part. Beams 22 (2004) 261-266.

    [5] N. Rohringer, D. Ryan, R.A. London, M. Purvis, F. Albert, et al., Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray freeelectron laser, Nature 481 (2012) 488-491.

    [6] A.V. Vinogradov, I.I. Sobelman, E.A. Yukov, Possibility of constructing a far-ultraviolet laser utilizing transitions in multiply charged ions in an inhomogeneous plasma, Sov. J. Quantum Electron 5 (1975) 59-63.

    [7] J. Nilsen, J.H. Scofield, E.A. Chandler, Reinvestigating the early resonantly photopumped X-ray laser schemes, Appl. Opt. 31 (1992) 4950-4956.

    [8] J. Nilsen, E. Chandler, Analysis of the resonantly photopumped Na-Ne X-ray laser scheme, Phys. Rev. A 44 (1991) 4591-4598.

    [9] J.A. Bearden, X-ray Wavelengths, Rev. Mod. Phys. 39 (1967) 78-124.

    [10] I.P. Grant, B.J. McKenzie, P.H. Norrington, D.F. Mayers, N.C. Pyper, An atomic multiconfigurational Dirac-Fock package, Comput. Phys. Commun. 21 (1980) 207.

    [11] H. Aksela, S. Aksela, J. Tulkki, T. Aberg, G.M. Bancroft, et al., Auger emission from the resonantly excited 1s2s22p63p state of Ne, Phys. Rev. A 39 (1989) 3401-3405.

    [12] J.-E. Rubensson, M. Neeb, A. Bringer, M. Biermann, W. Eberhardt, Electronic state-lifetime interference observed at Ne K inter-resonance excitation, Chem. Phys. Lett. 257 (1996) 447-452.

    [13] NIST Atomic Spectra Database, http://www.nist.gov/pml/data/asd.cfm.

    [14] H.A. Scott, Cretin e a radiative transfer capability for laboratory plasmas, JQSRT 71 (2001) 689-701.

    [15] A.E. Siegman, Lasers, University Science Books, Mill Valley, CA, 1986, pp. 221-242.

    [16] K.-N. Huang, M. Aoyagi, M.H. Chen, B. Crasemann, H. Mark, Neutralatom electron binding energies from relaxed-orbital relativistic Hartree-Fock-Slater calculations, Atomic Data Nucl. Data Tables 18 (1976) 243-291.

    [17] E. Antonides, E.C. Janse, G.A. Sawatzky, LMM Auger spectra of Cu, Zn, Ga, and Ge. I. Transition probabilities, term splittings, and effective Coulomb interaction, Phys. Rev. B 15 (1977) 1669-1679.

    Joseph Nilsen. Modeling the gain of inner-shell X-ray laser transitions in neon, argon, and copper driven by X-ray free electron laser radiation using photo-ionization and photo-excitation processes[J]. Matter and Radiation at Extremes, 2016, 1(1): 76
    Download Citation