• High Power Laser and Particle Beams
  • Vol. 32, Issue 4, 043201 (2020)
Guangrong Li1、2、3, Zhenguo Zhao1、2、3, Weijie Wang1、2、3, Chunguang You1、2, and Haijing Zhou2、3
Author Affiliations
  • 1Software Center for High Performance Numerical Simulation, China Academy of Engineering Physics, Beijing 100088, China
  • 2Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • 3Complicated Electromagnetic Environment Laboratory, China Academy of Engineering Physics, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202032.190264 Cite this Article
    Guangrong Li, Zhenguo Zhao, Weijie Wang, Chunguang You, Haijing Zhou. Design and implementation of semiconductor multi-physical parallel computing program JEMS-CDS-Device[J]. High Power Laser and Particle Beams, 2020, 32(4): 043201 Copy Citation Text show less
    Interpolation grid and integral grid (control body)
    Fig. 1. Interpolation grid and integral grid (control body)
    Forward automatic differentiation
    Fig. 2. Forward automatic differentiation
    Integral mesh (dual mesh) correction
    Fig. 3. Integral mesh (dual mesh) correction
    Discontinuity heterogeneous interface and algorithm region processing (right figure, there are two logical nodes M1 and M2 in node A)
    Fig. 4. Discontinuity heterogeneous interface and algorithm region processing (right figure, there are two logical nodes M1 and M2 in node A)
    Grid hierarchy and parallel components
    Fig. 5. Grid hierarchy and parallel components
    JEMS-CDS-Device
    Fig. 6. JEMS-CDS-Device
    Relationships between software modules
    Fig. 7. Relationships between software modules
    PN diode ’s density distribution of net doping and anode V-I curve
    Fig. 8. PN diode ’s density distribution of net doping and anode V-I curve
    2D NMOS equilibrium potential distribution comparison(potential unit: V, the potential reference zero is at infinity)
    Fig. 9. 2D NMOS equilibrium potential distribution comparison(potential unit: V, the potential reference zero is at infinity)
    Net doping and carrier distribution of 2D PN device (positive deviation 0.5 V)
    Fig. 10. Net doping and carrier distribution of 2D PN device (positive deviation 0.5 V)
    Input waveform and temperature distribution of PIN (at 7.78 ns)
    Fig. 11. Input waveform and temperature distribution of PIN (at 7.78 ns)
    linear solverpreconditiontime (iterations)/s
    mesh refinement 0; DOF: 11 165 mesh refinement 1; DOF: 43 925 mesh refinement 2; DOF: 174 245 mesh refinement 3; DOF: 694 085
    LU0.209 6 (1)1.065 2 (1)7.018 4 (1)50.442 3 (1)
    BiCGSTABJacobi0.131 8 (106)0.868 3 (226)7.119 6 (455)68.205 1 (1 011)
    BiCGSTABASM0.126 5 (106)0.919 0 (226)7.666 1 (455)72.558 4 (1 011)
    BiCGSTABILU0.127 6 (106)0.840 7 (226)7.020 5 (455)69.624 0 (1 011)
    GMRESBJacobi0.263 5 (448)2.358 7 (940)26.995 4 (2 548)427.814 (9 450)
    GMRESASM0.291 4 (448)2.466 6 (940)27.758 8 (2 548)462.929 (9 450)
    GMRESILU0.283 8 (448)2.311 4 (940)27.126 1 (2 548)425.375 (450)
    Table 1. Typical convergence of linear solver in DDM1 nonlinear iteration
    coresunknownsaverage iterationstime/sefficiency/%
    41.74×10515483.32100
    166.94×105353151.7054.9
    642.77×106757285.7829.1
    2561.11×1071727531.1915.7
    Table 2. Weak extension parallel test (Basic Newton,ASM+BiCGSTAB)
    corestotal time/slinear solver time/sspeedupefficiency/%
    32470.31228.441.00100.0
    64284.78113.671.6582.6
    128157.9059.202.9874.5
    25699.5632.314.7259.1
    Table 3. Strongly extended parallel test (Basic Newton,ASM+BiCGSTAB,2.771×106 Unknowns)
    Guangrong Li, Zhenguo Zhao, Weijie Wang, Chunguang You, Haijing Zhou. Design and implementation of semiconductor multi-physical parallel computing program JEMS-CDS-Device[J]. High Power Laser and Particle Beams, 2020, 32(4): 043201
    Download Citation