[1] WANG P F. Research on electromechanical coupling model of piezoelectric ultrasonic transducer working at bending vibration mode [D]. Harbin: Havin University of Science and Technology,2013. (in Chinese)
[4] CHAPA J O, RAO R M. Algorithms for designing wavelets to match a specified signal [J]. IEEE Transactions on Signal Processing, 2000, 48(12): 3395-3406.
[5] HAN X H, CHANG X M. An intelligent noise method for chaotic signals based on genetic algortithms and lifting wavelet transforms [J]. Information Science, 2013, 218(1): 103-118.
[6] LAZARO J C, SAN EMETERIO J L, RAMOS A, et al.. Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets[J]. Ultrasonics, 2002, 40(1-8): 263-267.
[7] GENG S L, SHANG ZH Y, SHI H W. Laser ultrasound signal processing based on Wavelet Transform [J]. Journal of Yunnan University: Natural Sciences Edition, 2005,27(1): 44-46,51. (in Chinese)
[8] LIANG Y L. Research on ultrasonic signal processing based on wavelet analysis [D]. Guangzhou: South China University of Technology, 2012.
[9] KARABOGA N, LATIFOGLU F. Adaptive filtering noisy transcranial Doppler signal by using artificial bee colony algorithm [J]. Engineering Applications of Artificial Intelligence, 2013,26(2): 677-684.
[10] SABATINI A M. A digital-signal-processing technique for ultrasonic signal modeling and classification[C]. IEEE Transactions on Instrumentation and Measurement, 2001, 50(1): 15-21.
[11] YU H Q,HUANG Z L,QU W L.Temperature and pressure characteristic correction of ultrasonic transducer based on RLS algorithm[J].Chinese Journal of Scientific Imstrument,1997,18(4): 378-383.(in Chinese)
[12] A1 BAE S, KIM J, UDPA L, et al.. A new adaptive grain noise cancellation filtering technique[J]. Review of Progress in Quantitative Nondestructive Evaluation of Materials, 1997, 17: 759-66.
[13] KIM J, UDPA L, UDPA S. Multi-stage adaptive noise cancellation for ultrasonic NDE[J]. NDT&E International, 2001, 34: 319-328.
[14] CARULLO A, FERRARIS F, GRAZIANI S, et al.. Ultrasonic distance sensor improvement using a two-level neural network[J]. NDT & E International, 1997, 30(5): 326-330.