• Chinese Journal of Lasers
  • Vol. 51, Issue 6, 0601002 (2024)
Peiheng Jiang1、2, Chaodu Shi1、2, Lin Chen3, Shijie Fu1、2, Quan Sheng1、2、*, Cailing Fu3、**, Wei Shi1、2、***, and Jianquan Yao1、2
Author Affiliations
  • 1School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
  • 3Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
  • show less
    DOI: 10.3788/CJL230873 Cite this Article Set citation alerts
    Peiheng Jiang, Chaodu Shi, Lin Chen, Shijie Fu, Quan Sheng, Cailing Fu, Wei Shi, Jianquan Yao. 700 mW Single-Frequency Linear Cavity Tm3+/Ho3+-Codoped Fiber Laser at 2.05 μm Based on Saturable Absorber[J]. Chinese Journal of Lasers, 2024, 51(6): 0601002 Copy Citation Text show less
    References

    [1] Fu S J, Shi W, Feng Y et al. Review of recent progress on single-frequency fiber lasers[J]. Journal of the Optical Society of America B, 34, A49-A62(2017).

    [2] Fu S J, Shi G N, Sheng Q et al. Dual-wavelength fiber laser above 2 μm based on cascaded single mode-multimode-single mode structures[J]. Optics Express, 24, 11282-11289(2016).

    [3] Shi W, Fu S J, Sheng Q et al. Research progress on high-performance single-frequency fiber lasers: 2017-2021 (Invited)[J]. Infrared and Laser Engineering, 51, 20210905(2022).

    [4] Renz G, Bohn W. Two-micron thulium-pumped-holmium laser source for DIRCM applications[J]. Proceedings of SPIE, 6552, 655202(2007).

    [5] Barria J B, Mammez D, Cadiou E et al. Multispecies high-energy emitter for CO₂, CH₄, and H₂O monitoring in the 2 μm range[J]. Optics Letters, 39, 6719-6722(2014).

    [6] Szlauer R, Götschl R, Razmaria A et al. Endoscopic vaporesection of the prostate using the continuous-wave 2-μm thulium laser: outcome and demonstration of the surgical technique[J]. European Urology, 55, 368-375(2009).

    [7] Shi C D, Fu S J, Shi G N et al. All-fiberized single-frequency silica fiber laser operating above 2 μm based on SMS fiber devices[J]. Optik, 187, 291-296(2019).

    [8] Tench R E, Romano C, Williams G M et al. Two-stage performance of polarization-maintaining holmium-doped fiber amplifiers[J]. Journal of Lightwave Technology, 37, 1434-1439(2019).

    [9] Beaumont B, Bourdon P, Barnini A et al. High efficiency holmium-doped triple-clad fiber laser at 2120 nm[J]. Journal of Lightwave Technology, 40, 6480-6485(2022).

    [10] Thomas E, Ryan L, Imtiaz M et al. 1-kW, all-glass Tm: fiber laser[EB/OL]. http:∥www.qpeak.com/sites/psicorp.com/files/articles/PW%202010%201kW%20Tm_fiber%20laser.pdf

    [11] Walasik W, Traoré D, Amavigan A et al. 2 μm narrow linewidth all-fiber DFB fiber Bragg grating lasers for Ho- and Tm-doped fiber-amplifier applications[J]. Journal of Lightwave Technology, 39, 5096-5102(2021).

    [12] Zhang J X, Sheng Q, Zhang L et al. 2.56 W single-frequency all-fiber oscillator at 1720 nm[J]. Advanced Photonics Research, 3, 2100256(2022).

    [13] Zhang L, Sheng Q, Chen L et al. Single-frequency Tm-doped fiber laser with 215 mW at 2.05 µm based on a Tm/Ho-codoped fiber saturable absorber[J]. Optics Letters, 47, 3964-3967(2022).

    [14] Kuan P W, Fan X K, Li X A et al. High-power 2.04 μm laser in an ultra-compact Ho-doped lead germanate fiber[J]. Optics Letters, 41, 2899-2902(2016).

    [15] Wu J F, Yao Z D, Zong J E et al. Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber[J]. Proceedings of SPIE, 7395, 71951K(2009).

    [16] Wolf A A, Skvortsov M I, Kamynin V A et al. All-fiber holmium distributed feedback laser at 2.07 μm[J]. Optics Letters, 44, 3781-3784(2019).

    [17] Oh K, Morse T F, Weber P M et al. Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser[J]. Optics Letters, 19, 278-280(1994).

    [18] Wang Z H, Zhang B, Liu J et al. Recent developments in mid-infrared fiber lasers: status and challenges[J]. Optics & Laser Technology, 132, 106497(2020).

    [19] Xue G H, Zhang B, Yin K et al. Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm[J]. Optics Express, 22, 25976-25983(2014).

    [20] Kishi N, Yazaki T. Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning[J]. IEEE Photonics Technology Letters, 11, 182-184(1999).

    [21] Poozesh R, Madanipour K, Parvin P. High SNR watt-level single frequency Yb-doped fiber laser based on a saturable absorber filter in a cladding-pumped ring cavity[J]. Journal of Lightwave Technology, 36, 4880-4886(2018).

    [22] Zhang J X, Sheng Q A, Zhang L et al. Single-frequency 1.7-μm Tm-doped fiber laser with optical bistability of both power and longitudinal mode behavior[J]. Optics Express, 29, 21409-21417(2021).

    [23] Zhu N H, Man J W, Zhang H G et al. Lineshape analysis of the beat signal between optical carrier and delayed sidebands[J]. IEEE Journal of Quantum Electronics, 46, 347-353(2010).

    [24] Yang C S, Zhao Q L, Feng Z M et al. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser[J]. Optics Express, 24, 29794-29799(2016).

    [25] Yang C S, Guan X C, Lin W et al. Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser[J]. Optics Express, 25, 29078-29085(2017).

    Peiheng Jiang, Chaodu Shi, Lin Chen, Shijie Fu, Quan Sheng, Cailing Fu, Wei Shi, Jianquan Yao. 700 mW Single-Frequency Linear Cavity Tm3+/Ho3+-Codoped Fiber Laser at 2.05 μm Based on Saturable Absorber[J]. Chinese Journal of Lasers, 2024, 51(6): 0601002
    Download Citation